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Alkaline Igneous Rocks 
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Cihan YALÇIN3 

 

Introduction 

Alkaline is defined as having a higher alkali concentration 

than in feldspar alone. It also describes rocks containing significant 

amounts of foids (nepheline, sodalite, leucite), alkaline pyroxenes, 

alkaline amphiboles, and melilite. Alkaline rocks generally contain 

more alkali than the feldspars alone can carry. Excess alkalis occur 

in feldspathoids, sodic pyroxenes-amphiboles or other alkali-rich 

 
1 Dr. Arş. Gör., Fırat University, Engineering Faculty, asar@firat.edu.tr ORCID No: 000-
0002-9752-7807 
2 Dr. Öğr. Üyesi, Fırat University, Engineering Faculty, erturkmae@gmail.com  ORCID No: 
0000-0003-1197-9202 
3  Dr., Ministry of Industry and Technolgy, Wordbank PIU. cihan.yalcin@sanayi.gov.tr 
ORCID No: 0000-0002-0510-2992 

mailto:asar@firat.edu.tr
mailto:erturkmae@gmail.com
mailto:cihan.yalcin@sanayi.gov.tr


 

--6-- 

 

phases. In the most limited sense, alkaline rocks are so deficient in 

SiO2 as to become critically unsaturated concerning Na2O, K2O, and 

CaO, with Nepheline or Acmite appearing to be the norm. 

On the other hand, some rocks may be deficient in Al2O3 (and 

not necessarily SiO2), so Al2O3 may not accommodate the alkalis in 

normative feldspars. Such rocks are called peralkaline; the silica can 

be undersaturated or oversaturated (URL-1). Compared to alkalis, 

these rocks are insufficient in silica and alumina, and their norms 

contain nepheline and akmite. For example, carbonatites are 

certainly poor in silica but rarely rich in alkali. True (nepheline 

normative) alkaline basalts transform into hypersthene normative 

transitional basalts without any significant change in mineralogy. 

Because transitional basalts are often closely associated with 

alkaline basalts in the field, they are traditionally considered 

alkaline. It is practical to define alkaline igneous rocks simply by 

their alkaline (Na2O+K2O) and silica contents (Fitton & Upton, 

1987). 

Alkaline rocks can be grouped as follows: 

1) Rocks containing sufficient or excess silica lacking 

alumina: These rocks with a molecular ratio of (Na2O+K2O)/Al2O3 

> 1 are called peralkaline rocks. Typical peralkaline silicic volcanics 
are represented by pantellerite (Na-rich rhyolite) and comendite (K-

rich rhyolite) (URL-1). 

2) Rocks in which alumina is sufficient (enough to saturate 

the feldspar composition) or in excess, but silica is deficient: The 

rocks then consist of feldspars and feldspathoids, as well as mica 

hornblende, corundum, etc. Tephrite and phonoliths fall into this 

group (URL-1). 

3) Rocks deficient in both silica and alumina according to 

feldspar composition: Rocks contain alkali feldspars, as well as 

silica-unsaturated minerals, feldspathoids, and alkali-rich mafic 

minerals. Foid-containing trachytes belong to this group (URL-1). 
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Various aspects of the classification of alkaline rocks need to 

be clarified and controversial. This reflects uncertainty about genetic 

relationships and the tectonic setting of many formations. While 

some researchers attempt classification based on genetic similarities 

(such as igneous series), others recognize the difficulty of assessing 

the formation of such diverse rocks in complex continental 

environments and use chemical, mineralogical, mineralogical, and 

textural similarities (URL-1). 

Alkaline Igneous Rocks 
Carbonatites 

Carbonatite is a rare rock type that is considered to be of 

mantle origin, rich in calcite and other carbonate minerals. Igneous 

rocks containing more than 50% carbonate minerals are defined as 

carbonatites (Figure 1). These rocks are found in association with 

intruded masses, dykes, conical covers, and rarely lavas and tephra, 

in association with alkali-rich red rocks (such as nepheline, syenite). 

Carbonatite formations are highly prevalent as either intrusive or 

sub-volcanic rocks. Carbonatites associated with alkaline intrusive 

complexes are mostly seen as zoned stocks, sills, dykes, breccias and 

veins. They are seperated into subunits depending on their carbonate 

(calcite, dolomite and ankerite) and silicate (biotite, pyroxene, 

amphibole, etc.) mineral contents (Pirajno, 2022; Yastı, 2023). 

Volcanic derivatives are rare. Because the flow of carbonatite lavas 

is irregular, they react with the atmosphere very quickly. The oldest 

known active carbonatite volcano is the Ol Doinyo Lengai volcano 

in Tanzania. This volcano ejected lava with the lowest temperature 

in the world (500°C-600°C) (URL-2; Yastı, 2023). 

Rarely seen carbonatites are geochemically rich in high 

amounts of Ba, Sr, P and light-REE. Carbonatites are 

characteristically located in systems associated with alkali silicate 

magmatic rocks. Associated silicates are generally alkaline 

ultramafic rocks. They may mostly contain more evolved types such 

as pyroxenites, nephelinites (and ijolites), and, to a lesser extent, 
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phonolite and nepheline syenite (URL-2; Yastı, 2023). There are 

essentially three main theories regarding the origin of carbonatites: 

1. Fractionated carbonated nephelinite or melilite residue 

melts. 

2. Immiscible melt fractions of CO2-saturated silicate melts. 

3. Primary mantle melts formed by partial melting of 

peridotite containing CO2. 

A combination of these three theories is also popular. For 

example, carbonatite melts formed by deep melting of carbonate 

eclogite in the upper mantle infiltrate peridotites to produce silica-

poor carbonate-containing melts, which then penetrate the crust and 

evolve or decompose (Yaxley & Brey, 2004; Yastı, 2023). 

Carbonatites are also thought to be formed in the lithospheric mantle 

as rapidly emerging partial melts due to hot mantle uplift. If the rate 

of this mantle carbonate melting decreases due to sudden heat loss, 

carbonate melt metasomatism occurs in the mantle. Approaching the 

much hotter centre of the crest causes melting in the metasomatic 

plane, and the formation of carbonatite melts is observed on the 

surface. Although the crest model is widely accepted, the age 

distributions of carbonatites determined worldwide in recent years 

have been strongly lithospherically controlled, suggesting a direct 
connection with mantle crests. (Woolley & Bailey, 2012; Yastı, 

2023). 

The atomic structures of carbonate ranges have yet to be 

studied compared to the structures of silicate ranges. Still, they play 

a fundamental role in controlling their chemical and physical 

behaviour in natural systems. The atomic structures of carbonate 

melts are essential in controlling physical and chemical behaviour in 

natural systems but have yet to be investigated compared to silicate 

melts. Ionic carbonate melts are thought to contain a structural 

disorder in which there is no obvious relationship between metal 

cations and carbonate molecules. However, when data on the phase 

relationships of carbonates, the solubility of metals in carbonate 
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liquids, and spectroscopy and atomic simulations of carbonate 

glasses are combined, it emerges that carbonate liquids have 

structures on a larger scale than their component molecular groups. 

Factors controlling the crystallization of carbonatite-alkali 

complexes; 

• direct production by very low-grade partial melting and melt 

differentiation in the mantle, 

• liquid immiscibility between a silicate melt and a carbonate 

melt, 

• peculiar, extremely crystalline fractionation (URL-2; Yastı, 

2023). 

 

 

Figure 1. Macroscopic views of carbonatites (URL-2; URL-3) 
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Although there is data about each process, the main point is 

that these models are unusual and special processes. Considering the 

geochemical and mineralogical data, it is thought that carbonatites 

were formed by magma melting limestone or marble during 

intrusion. 

Silicates intruding into the host rocks cause phenitization in 

the host rocks. Fenitization is an indicator of alteration and consists 

of green-coloured, alkali feldspar, egyrin and alkali hornblende 

dominant rocks. Fenitization occurs during the crystallization of 

carbonatites containing highly alkaline elements and volatile 

components. 

Carbonatites are classified as calcite sovite (coarser textured) 

and alvicite (finer textured) types or facies. The two are also 

distinguished by their trace and minor element composition (Le Bas, 

1999; URL-2). Alkaline carbonatites are called lengaites. Samples 

containing 50-70% carbonate minerals are called in-silico 

carbonatites (Kresten, 1983). Additionally, carbonatites may be 

enriched in apatite and magnetite or rare earth elements, fluorine and 

barium (Guilbert et al., 1986; URL-2). 

Natrocarbonatite consists largely of two minerals: nyerereite 

and gregorite. These minerals are carbonates in which both sodium 
and potassium are present in significant amounts. Both are 

anhydrous and react extremely quickly when they come into contact 

with moisture in the atmosphere. Erupting dark brown or black lava 

and ash, which begins to turn white within a few hours, then turns 

grey after a few days and brown after a few weeks (Allington-Jones, 

2014; URL-2) 

Nephelinites  

They are fine-grained extrusive rocks composed of nepheline 

and clinopyroxene (Figure 2); Nephelinites in which mafic minerals 

are more abundant than foids are called melanephelinites. Cordier 

first used the term in 1842 (URL-1). 
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Figure 2. Macroscopic views of nephelinites (URL-4; URL-5) 

Nephelinites (along with melilitids and more exotic types 

such as kamafugites and alnoids) generally occur in continental rift 

zones, sometimes associated with carbonatites, but are also found on 

oceanic islands and some subduction environments. Experimental 

studies have revealed that they are the product of low-grade melting 

at high CO2 pressures (Brey and Green, 1975). However, their 

ultimate origin and relationships with more ordinary alkaline basalts 

must be fully understood (Zeng et al. 2021). 

Lamprophyres 

Lamprophyres are a complex group of rocks showing 

mineralogical similarities to kimberlites and lamproites (Figure 3) 

(URL-6). Lamprophyres are difficult to classify using existing 

criteria. They can not be classified according to modal ratios such as 

the QAPF system or compositional discrimination diagrams such as 

TAS. It is unlikely that a simple taxonomic system will be found 

unless appropriate genetic criteria are applied, unless the 

classification considers the formation of rocks. The term 

"lamprophyre", from "lampros" and "porphyry" (shiny porphyry), 

was introduced by von Gumbel in 1874 for a group of dark rocks 
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forming small depressions containing phenocryst brown mica and 

hornblende, but not feldspar phenocrysts. Following its definition, 

the term was expanded to include various hypabyssal rocks 

containing ferromagnesian phenocrysts. As the number of difficult 

rocks to classify increased in the late 19th and early 20th centuries, 

they were added to the lamprophyre group (URL-6). Eventually, the 

group became a repository for mafic phenocryst-rich rocks that are 

difficult to characterize. Unfortunately, applying type locality 

nomenclature has led to "a legion of obscure rock types named after 

equally obscure European villages". This archaic, often imprecise 

terminology has been a particular obstacle in lamprophyre 

petrogenetic studies due to the grouping of rocks of different 

lineages under a single petrographic heading. This grouping has been 

interpreted to imply genetic relationships that do not exist (URL-6). 

"Lamprophyres are rocks characterized by the presence of 

euhedral to submorphic phenocrysts composed of mica and 

amphibole, with lesser amounts of clinopyroxene and melilite, 

embedded in a matrix that may consist of plagioclase, alkali feldspar, 

carbonate, feldspathoids, melilite, monticellite, mica, pyroxene 

perovskite, amphibole, Fe-Ti oxides and glass" (URL-6). 

Lamprophyres are divided into four groups; 

• Calc-alkaline (shoshonitic) lamprophyres. 

• Leucite lamprophyres. 

• Alkaline lamprophyres. 

• Ultramafic lamprophyres. 

Calc-alkaline (shoshonitic) lamprophyres 

These are nearly saturated, slightly potassic (Na < K) 

lamprophyres with moderate SiO2 content (about 53%) and 

accompany most post-orogenic granites or slightly potassic 

(shoshonitic) alkaline rocks. Their mineralogy, chemistry, field 

relationships, Sr isotopic ratio, and xenolith content have been taken 

to proposed that they are typically hybrids between granitic debris or 
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crustal sediments and basic magma. Calc-alkaline lamprophyres are 

also known as ordinary lamprophyres and consist of minette, 

vosegit, kersantite and spessartite (URL-6). 

 

Figure 3. Macroscopic views of lamprophyres (URL-6) 

Vosegites: A vogesite, basic amphibole, is a porphyritic 

alkaline igneous rock dominated by hornblende and potassic 

feldspar, often with augite and plagioclase present as accessories in 

the groundmass. 

Minettes: Minette is a porphyritic alkaline igneous rock 

dominated by elemental biotite and potassium. 

Leucite lamprophyres 

Leucite lamprophyres  are often described as "lamprophyric" 

due to their porphyritic character and large biotite or magnophorite 

phenocrysts. Some are near saturation, do not differ from minenets, 

and fall into the broad category of potassic alkaline rocks. However, 
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their similarities are unclear, and their petrogenesis is quite different 

from other lamprophyre groups (URL-6). 

Cascadite: Cascadite is a sodic melanocratic lamprophyre 

consisting of biotite, olivine and augite phenocrysts in a matrix 

consisting mainly of alkali feldspar and containing fragments that 

may be leucite (URL-6). 

Fitzroydite: Fitzroydite is a leucite-phlogopite lamprophyre 

(URL-6) consisting mainly of phlogopite and leucite. 

Orendite: Orendite is leucite lamprophyre composed 

primarily of leucite, alkali feldspar, and, secondarily, clinopyroxene, 

mica, and amphibole. 

Jumillite: Jumilite is leucite lamprophyre (URL-6), 

consisting primarily of leucite and diopside and secondarily of 

olivine, alkali feldspar and phlogopite. 

Alkali lamprophyres 

These lamprophyres are effectively hydrous basanites, all 

associated with alkali basalts or nepheline syenite/gabbro plutons. 

Alkaline lamprophyres are generally interpreted as derived from 

hydrous basanitic or tephritic magmas that developed in crustal 

dome areas. These include camptonite, monschite, sannaite, 

quaternite and other rare rocks. 

Camptonites: Camptonite is a porphyritic alkaline igneous 

rock dominated by essential plagioclase and brown amphibole 

(usually with hornblende and often titanium augite). Plagioclase is 

found in the dough (URL-6). 

Monchiquites: Monchiquite is a porphyritic alkaline igneous 

rock dominated by essential olivine, titanium augite and brown 

hornblende (URL-6). 

Sannaites: Sannaites are generally similar to camptonites 

except that they contain alkali feldspar instead of plagioclase (URL-

6). 
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Fourchite: Fourchite is a melanocratic analcime lamprophyre 

containing abundant augite but no olivine and feldspar. 

Other very rare members of this subgroup include: 

Mondhaldeite: A type of sannaite composed of equal 

proportions of plagioclase and alkali feldspar, and secondarily 

clinopyroxene, amphibole and leucite, in a glassy matrix. 

Espichellite: A variety of camptonite containing analcime. 

Estratite: A glassy sannaite containing rare olivine 

phenocrysts, weathered hornblende, and occasional augite in a 

matrix of augite, titanomagnetite, feldspar, and glass (URL-6). 

Heptorite: A haüyne-monchiquite composed of titanium 

augite, barkevicite, olivine and haüyne phenocrysts in a paste of 

glass and labradorite laths. 

Heumite: A sodalite-sannaite (URL-6) consisting of biotite, 

hornblende, sanidine and foids. 

Giumarrite: A variety of hornblende monchiquite. 

Ultramafic lamprophyres 

Melilite, perovskite and calcite are characteristic phases. 

Alnoids are closely related to kimberlites, which can be included in 

the subgroup. Allylicites are closer to carbonatites than alnoids 

(URL-6). Ultramafic lamprophyres from local dyke swarms or 
diatreme clusters are primarily associated with continental rifting 

and may represent parent magmas for contemporary carbonatite 

complexes. Their additional occurrence in the oceanic environment, 

xenolith contents in the mantle, and high mg, Cr, and Ni indicate that 

many of these are mantle-derived primary magmas formed at depths 

of melilites and kimberlites (c. 150 km) but at higher CO2 pressures 

than melilites (URL-6). 

Aillikite: From Aillik Bay, Canada. An ultramafic carbonate-

rich lamprophyre (URL-6) consisting of a variety of phenocrysts, 

including diopsidic pyroxene, olivine, phlogopite and amphiboles 
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within a matrix of similar minerals that contain at least partial 

primary carbonate and minor perovskite but no melilite. 

Leucites 

Leucites are generally porphyritic extrusive or subvolcanic 

rocks consisting of clinopyroxene (Aegirine, diopside, Titanoaujit) 

and leucite minerals(Figure 4) (URL-7). 

The minerals it contains are plagioclase, k-feldspar, leucite, 

clinopyroxene, nepheline and olivine. Melilith is not observed in the 

presence of plagioclase. Phlogopite minerals are commonly seen. 

Accessory minerals: perovskite, biotite, wadeite, apatite, prideite, 

magnetite, ilmenite and spinel (URL-7). 

 

Figure 4. Macroscopic views of leucites (URL-7) 

Leucite easily decomposes in pre-Tertiary rocks and 

transforms into analcite, zeolite, and other secondary minerals. It is 

rarely observed in plutonic rocks and dykes (URL-7). 

"Pseudoleucites" are rounded areas composed of feldspar, 

nepheline, analcite, etc., having the composition, shape, and, in some 

cases, the external crystal form of leucite; these are probably 
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pseudomorphs or paramorphs developing from leucite; because this 

mineral is not stable at ordinary temperatures and can be expected to 

spontaneously transform into an assemblage of other minerals under 

suitable conditions. (URL-7). 

Rocks containing plutonic leucite are leucite syenite and 

missourite. The first consists of orthoclase, nepheline, sodalite, 

diopside, aegirine, biotite, and sphene. Two incidents are known, one 

in Arkansas and the other in Sutherland, Scotland. The Scottish rock 

was called borolanite. In both examples, large round spots are visible 

on the hand samples. They are pseudoleucites and, under the 

microscope, prove to be composed of orthoclase, nepheline, sodalite 

and weathering products. These have an external radial arrangement, 

but their centres have an irregular structure; melanite is an important 

accessory in both rocks. Missourites with mafic composition contain 

olivine, leucite, biotite and augite. (URL-7). 

Leucite is generally observed in Tertiary lavas. Although 

leucites contain no quartz, feldspar is often present, although certain 

groups of leucite lavas are not feldspathic. Many also contain 

sodalite, nepheline, nosean and hauyne. The much rarer melilite 

mineral is also seen in some samples (URL-7). The most common 

ferromagnesian mineral is augite; more basic varieties include 
olivine. Hornblende and biotite also occur. Melanite is found as well 

as in leucite syenites. Sodium-rich extrusive leucite with a glassy 

paste rich in olivine and clinopyroxene is sometimes called ignite 

(URL-7). 

Phonalite 

Phonolites are extrusive rocks consisting mainly of alkali 

feldspar (Anorthoclase and Sanidine), alkali amphiboles, alkali 

pyroxenes, mafic minerals such as Augite, Biotite and Olivine, and 

one or more foids. If nepheline is the only foid then the term 

phonolite alone can be used, but if, for example, leucite is the most 

abundant foid, the term leucite phonolite should be used. It refers to 

a stone that makes noise because of its metallic sound when struck 



 

--18-- 

 

against an unbroken plate; hence the English name clinkstone (URL-

1). 

Tephrite 

Tephrites are extrusive rocks composed mainly of calcic 

plagioclase, clinopyroxene and foids. Foids normally constitute 

more than 10% of felsic minerals. The difference between tephrites 

and basanites is that they do not contain olivine. Tephrite also 

contains small amounts of alkali feldspar; therefore, with increasing 

alkali feldspar content, they transform into phonolitic Tephrites and 

tephritic Phonolites. There are both sodium-rich and potassium-rich 

Tephrites. Sodium-rich varieties are known from the Canary Islands 

and Thaiti, and potassium-rich varieties are known from the Roman 

igneous provinces and Vesuvius. (URL-1). 

Basanite 

Basanite is an aphanite (fine-grained) igneous rock low in 

silica and rich in alkali metals (Figure 5). The mineral assemblage in 

basanite generally consists of olivine with abundant feldspathoids, 

augite and plagioclase and iron-titanium oxides such as magnetite 

and ilmenite in lesser amounts; minor alkali feldspar may be present. 

Olivine and clinopyroxene are common as phenocrysts and within 

the matrix. Augite contains significantly more titanium, aluminium 

and sodium than typical tholeiitic basalt. There is no quartz like 

orthopyroxene and pigeonite (URL-8). 

Chemically, basanites are mafic. As seen in the TAS 

classification diagram, it is low in silica and high in alkaline 

compared to basalt, which typically contains more SiO2. Nephelinite 

is richer in Na2O plus K2O than SiO2 (URL-8). 
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Figure 5. Macroscopic views of Basanites (URL-8) 

Discussion 

Alkaline rocks occur in many different tectonic 

environments and petrological associations and have a wide range of 

chemical compositions; hence, it is clear that no parent magma can 

produce all alkaline rocks. Their occurrence on oceanic islands and 

seamounts suggests that some of the parent magmas may be 

produced within the mantle and that these magmas may develop in 

an environment far removed from any possible contamination of 

continental crust materials. Most petrologists now believe that most 

alkaline rocks evolved from parent magmas formed by partial 

melting within the mantle, and fractional crystallization and other 

differentiation processes can often only emphasize the alkaline 

tendency already transferred to the parent magma (URL-1). 

Alkaline magmatic activity is tightly controlled by releasing 

volatile-charged magma from the deep mantle source (URL-1). 

Cracks in the continental lithosphere act as conduit pathways for 

these magmas, and volatiles and incompatible elements are drained 

through narrow cracks and rift zones. The second process results in 

metasomatisms. The composition of the ascending magma is largely 

controlled by host rock reactions and polybaric fractional 
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crystallization (URL-1). The heat from the magma causes a gradual 

increase in partial melting, and a wide variety of different magmas 

can be produced depending on the composition of the melted 

materials. It has been suggested that undersaturated alkaline rocks 

are normally formed within the mantle at a depth of at least 80 km 

and that the formation of these magmas tends to be triggered by the 

flow of low-viscosity fluids from the degassing mantle (URL-1). 

Conclusion 

Alkaline is defined as having a higher alkali concentration 

than in feldspar alone. It also describes rocks containing significant 

amounts of foids (nepheline, sodalite, leucite), alkaline pyroxenes, 

alkaline amphiboles, and melilite. Rocks that contain sufficient or 

excess silica but lack alumina are grouped as rocks that contain 

sufficient or excess alumina (enough to saturate the feldspar 

composition) but lack silica and rocks that are deficient in both silica 

and alumina according to their feldspar composition. Carbonatites, 

nephelinites, lamprophyres, phonalites, tephrites and basanites 

represent alkaline rocks. 
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Introduction 

Ilgın coal field is located in the northwest of Konya province. 
Operable coal thickness in the field varies between 0,60-21,55 

metres. During the coal formation, coal formation was interrupted 
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from time to time due to the arrival of detrital material to the basin 

and thickenings occurred in the intersections within the coal. As a 

matter of fact, coals with less intersections are observed in the 

northwestern and northeastern parts of the field. In the northern and 

southern parts of the site, thickening of the interstices and 

successions with coals have occurred due to the water mobility of 

the depositional environment. Phytoplankton algal life starts in the 

lake when the coal formation is completed and the lake starts to 

deepen slowly. Bituminous claystone sedimentation takes place in 

this period which is more stagnant.  

Bituminous clayey mudstones (claystone and shale) have 

high phytoplankton algal productivity in the upper water column.  

There is no O2-rich water circulation in the water table. In other 

words, they are deposited in water environments rich in reducing 

H2S, where anoxic conditions prevail. The high organic matter 

content of bituminous clayey mudstones and the reducing redox 

conditions of the environment lead to the accumulation of very high 

amounts of major, trace and rare earth elements in these rocks 

compared to the surrounding rocks. For this reason, bituminous 

clayey mudstones are also operated as mineral deposits in the world. 

These rocks accumulate elements such as U, Th, P, Mo, V, Cu, Zn, 
Ni, Cr, Co, Pb, Au, and Ag more than the surrounding rocks.  

Norway (Lipinski et al. 2003), Venezuela (Alberdi-Genolet and 

Tocco 1999), Mexico (Nameroff et al. 2001), Finland (Loukola-

Ruskeeniemi, 1991), United States (Levanthal and Hosterman 1982; 

Schatzel and Stewort 2002; Paradis 2004), Canada (Moosman et al., 

1993). a; Moosman et al. 1993b; Mossman D.J. 1999), it is known 

that metals such as U, Ag, Se and Te are economically enriched in 

bituminous rocks.  Therefore, it is very important to understand the 

relationship between the deposition processes and biological 

productivity of bituminous clayey mudstones.  

Alpine tectonism was effective in the formation of 

Palaeozoic and Mesozoic aged units in the region where the study 

area is located. In the study area, Mesozoic aged units are 

unconformably on the Palaeozoic basement (Hüseyinca and Eren 
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2007).  Stratigraphically, the site starts with the Palaeozoic 

basement. Then, the Mesozoic aged units are unconformably 

overlain from bottom to top; Bahçecik formation consisting of 

Lower Triassic aged metacrustics and phyllites; Ertuğrul formation 

consisting of Lower Triassic aged metacarbonate-metacrustics 

succession; Kızılören formation consisting of Upper Triassic-Lower 

Jurassic aged bitumen dolomites; and finally Lorasdağı formation 

consisting of Lower Jurassic-Lower Cretaceous aged dolomites and 

calcitic dolomites. These Mesozoic aged units are again covered by 

Neogene aged formations as angular unconformably. In these units, 

the Middle Miocene (Middle Serravalian) aged (Karayiğit et al, 

1999) Harmanyazı Formation; Upper Miocene-Lower Pliocene aged 

Ulumuhsine Formation, which starts with conglomerate at the base 

and consists of limestones at the upper levels; Pliocene aged Sebiller 

Formation, which generally consists of claystone, conglomerate and 

different sized materials; Upper Pliocene-Quaternary aged Tekeler 

Formation, which consists of carbonate and iron cemented limestone 

and dolomite fragments of different sizes (Hüseyinca and Eren 

2007). The Neogene aged formations are overlain by recent 

alluvium. 

Material and Method 

The investigation materials in this study are rock samples 

taken systematically from the bottom to the top of the bituminous 

claystone levels with very high organic matter content, which are 

located just above the lignite coals in the field where the coal 

deposits are located in Ilgın (Konya).  

Major and trace element analyses of the bituminous 

claystone samples were carried out at Ankara University YEBIM 

laboratory using ICP-OES (Inductively Coupled Plasm-Optic 

Emission Spectrometry) model device.  

Pyrolysis analyses (%TOC analysis) to determine the organic 

matter content of the rocks were carried out in the laboratories of 
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TPAO R&D Centre Directorate using the Rock Eval VI device and 

IFP 160000 standard. 

Geochemical Investigations 

Clayey mudstones such as seyl and claystones make up about 

70 per cent of all sedimentary rocks. They are fine-grained (<0.1 

mm) clastic fragments, usually composed of clay minerals (Schieber 

and Zimmerle, 1998). The sediment forming the seas and claystones 

varies from river systems, lakes and continental slopes to deep sea 

basins. These sediments are deposited in very slow moving water 

environments (Bohacs, 1998). Organic matter-rich bituminous rocks 

occur not only in stratified, anoxic and/or euxinic deepwater basins 

such as the Black Sea and the Baltic Sea, but also when the rich 

biological productivity in the upper water column, resulting from 

flooding caused by upwelling events, cannot meet the very high 

oxygen demand that initiates anoxic conditions in the deep water 

layers. Examples of anoxic conditions in the water column include 

the Bengal Current on the coastal shelf of south-west Africa 

(Namibia), and the corresponding south-west African shelf, 

particularly Walvis Bay, west of Nabibia. Bituminous clayey 

mudstones also occur in lakes such as Lake Tanganyika and Lake 

Kivu in the East African rift-lake system. The constituent elements 

of bituminous clayey mudstones provide important information 

about the deposition processes of the rocks.  Major and trace 

elements in clayey mudstones generally come from three main 

sources: detrital, autogenic and biogenic. Each fraction contains an 

elemental ratio that indicates or signals the extent to which each 

source contributes to the amount of sediment deposited. Certain 

elements serve as primary indicators for particular sources. For 

example, elements such as Ti, Zr, Th, K, Sc, Rb and Al, which are 

delivered to the sediment in the detrital fraction, are derived from 

terrestrial sources. The abundance of these elements in the rock is 

important for organic matter preservation and bituminous claystone 

deposition. The biogenic fraction consists of elements such as Cu, 

Ni, Zn, Ca, P, Si (biogenic) and Ba, which are related to 
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biogeochemical cycles transferred to the sediment by organic matter, 

carbonate and silica. The abundance of these elements in the rock is 

used as an indicator of organic productivity. The autogenic fraction 

is derived from seawater and consists mainly of insoluble oxy-

hydroxides, sulphides and elements such as V, Mo and U in organic 

matter. Mo element  abundance, which is one of the indicators of 

autogenic fraction, is one of the main indicators for the richness of 

organic matter content in bituminous shales and claystones. In the 

bituminous claystone samples of Ilgın field, Al-Ti (r: 0,83) and Al-

K (r: 0,95) have very strong correlations (Figure 1). This indicates 

that Al, Ti and K elements are present in the clay mineral phase, 

probably as illite minerals (Bowker, 2002). 

 

                       (a)                                                  (b)      

Figure 1.( a) Al-Ti; (b) Al-K correlation relationship 

In clayey mudstones, low amounts of quartz (SiO2) and high 

Al2O3 values indicate that the detrital input to the sedimentary 

environment has decreased. In the bituminous claystone samples of 

Ilgın field, there is a weak correlation (r= 0,084) between Si and Al 

(Figure 2). When the abundance distributions of Al and Si are 

analysed, Si values are high while Al values are very low in all 

samples, indicating that there is a very low amount of detrital input 

to the environment; the sedimentary environment is a calm water 

body without energy and the source of Si is biogenic (Figure 3). 
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Figure 2. Al-Si correlation relationship 

A high Ti/Al ratio reflects the increased loading of fluvial 

sediments (Murphy et al., 2000). This is because Ti is usually 

associated with heavy mineral grains. Increased concentrations of Ti 

relative to Al indicate a higher eolian (wind transport) input 

(Bertrand et al., 1996). The decrease in the Ti/Al ratio and the 

increase in the Na/K ratio in the clayey mudstones indicate a 

decrease in the input of river detritics into the basin. This decrease 

indicates a relatively quieter depositional period in the basin. If the 

Ti/Al and Na/K ratios increase at the same time, it may reflect a 

higher input of volcanic material into the basin. This ratio may also 

be due to the degradation of basaltic rocks. When the relationship 

between Ti/Al and Na/K is analyzed in the bituminous claystone 

samples of the Ilgın field, the decrease in the Ti/Al ratio while the 

Na/K ratio increases in all samples indicates that the entry of detrital 

material into the lake basin decreased. In this case, it can be said that 

there are low energy water conditions and no volcanic material 

transportation in the basin (Figure 4).  
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Figure 3. Abundances of Al and Si in bituminous claystone samples 

of Ilgın field. 
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Figure 4. Ti/Al and Na/K relationship in bituminous claystone 

samples of Ilgın field. 

The element Ti is present in the composition of the erosion-

resistant mineral rutile (TiO2) from a terrestrial source. The high 

loading ratio of Ti does not indicate biological participation (Piper 

and Calvert, 2009). In the absence of biogenic quartz contribution of 

SiO2 in the sedimentary basin, higher Ti/Al and Na/K ratios and 

higher Si/Al ratios may be due to higher volcanic or eolian inputs. 

When the Ti/Al, Na/K and Si/Al ratios in the Ilgın basin are 

evaluated from this point of view, the fact that Ti/Al and Na/K ratios 

partially increase while Si/Al ratios show decreasing trends indicates 

that SiO2 is a biogenic source rather than detrital/cretaceous. For 

example, there was no volcanic or eolian input to the Ilgın basin in 

the Middle Miocene (Middle Serravalian) during the deposition of 

bituminous claystones. On the other hand, the increase in the Si/Al 

ratio indicates that there was a decrease in the detrital/sedimentary 

input, a relative increase in the water level of the lake during this 
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period, and an increase in the algal productivity of siliceous 

phytoplankton in the lake environment. In particular, a high Sr/Ca 

ratio in aquatic environments is typically indicative of a saline 

environment.  In the palaeo-salinity studies carried out on the 

bituminous claystone samples of the Ilgın field, Sr/Ba (1.32 - 5.24) 

ratio was 2.870, indicating that the lake water was salty during the 

deposition of the bituminous claystones. High P and S values support 

the activity of certain aquatic microorganisms destroying/degrading 

the organic matter in the sapropel muds at the bottom.  In the 

bituminous claystone samples from the Ilgın field, while the lake 

water was saline, the fact that P and S values generally follow a 

compatible trend with each other indicates that sulphate-reducing 

bacteria destroying organic matter were also active at the lake 

bottom (Figure 5). 

 

Figure 5. (a) P (ppm) concentration, (b) S (ppm) concentration and 

(c) Sr/Ca ratio in bituminous claystone samples from Ilgın field. 
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Discussion 

The following issues should be taken into consideration in 

the storage modelling of bituminous mudstones. These are the 

lithological and mineralogical properties of the rock under study and 

the redox conditions of the storage environment. For example, if the 

grain size of a rock consists of sand and silt size material, this rock 

was deposited in a high-energy environment and water conditions 

with abundant oxygen. Such a situation is not important for the 

formation of bituminous mudstone. If the rock is rich in corbonate 

minerals (calcite, dolomite etc.), it means that the rock was stored in 

alkaline waters with plenty of O2. In this case, if the biological 

productivity of surface waters is high, the amount of organic matter 

accumulated at the bottom is generally low due to the low clay 

content that will envelop and protect the organic matter falling to the 

bottom. Therefore, there is generally no OM accumulation in 

limestones. The amount of OM in marls with high carbonate content 

is lower than in claystones and shales. The high algal productivity at 

the lake surface and the high organic matter richness in the clayey 

sediments at the bottom should be considered together. Detailed 

investigations show that there is a systematic correlation between 

basic biological productivity and the inorganic matter content of the 

bottom sediment. Under these conditions, if the biological 

productivity at the surface is high, the amount of organic matter 

(OM) preserved at the bottom in the absence of O2 circulation is 

expected to be very high. In these conditions, Si/Zr, Cu, Ni and P, 

which are indicators of biological productivity, and redox-sensitive 

elements (such as V, Cu, Ni, Co, Mo etc.), Ni/Co ratio and Mo 

abundance, which are redox indicators of the bottom, are examined. 

According to Tribovillard et al. (2006), higher Ni/Al and Cu/Al 

ratios indicate higher water column efficiency. As it is known, there 

is a very strong relationship between biological productivity at the 

surface and OM accumulation at the bottom. Therefore, in parallel 

with the increase in OM, elements such as Cu and Ni, which act as 

bio nutrients, will have a very strong correlation with %TOC. When 

analysed from this point of view, Ni/Al, Cu/Al and %TOC have 
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similar increasing trends in the bituminous claystone samples of 

Ilgın field (Figure 6). 

 

Figure 6. Cu, Ni and %TOC relations in bituminous claystone 

samples of Ilgın field. 

On the other hand, the fact that the Ni/Al and Cu/Al increase 

trends observed in samples KI-3 and KI-3/2 in Figure 7 are much 

higher than the other samples indicates that the biological 

productivity in the precipitation processes of these samples is very 

high. 

When the biological productivity of surface waters is high, 

the relationship between Si/Zr, which is an indicator of algal 

productivity, and P, which is a nutrient indicator, will be strong. 

When the Si/Zr and P relationships are examined in the bituminous 

claystone samples of Ilgın field, it can be said that the biological 

productivity of the surface waters is high (Figure 8). The excessive 

Si trending coinciding with the total P concentration in Figure 8 

indicates that the source of Si is biological. Where Si is increased but 

P is low, Si is associated with quartz of detrital origin. During this 
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period, detrital input to the basin increases, biological productivity 

and organic matter conservation decrease. 

 

Figure 7. Ni/Al and Cu/Al relationships in bituminous claystone 

samples from Ilgın field. 
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Figure 8. Si/Zr and P relations in bituminous claystone samples of 

Ilgın field. 

In the analysed samples, there is a very strong correlation (r= 

0,864) between iron (Fe) and sulphur (S). This indicates that Fe was 

precipitated in the sulphide phase (Pyrite, FeS2) and the redox 

condition was anoxic, H2S-rich, reducing environment (Figure 9). 

 

Figure 9. Fe-S correlation relationship  
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Conclusions 

In terms of organic matter accumulation, clayey mudstones 

under anoxic water bodies are richer than the sediments under 

oxygenated water bodies. Bituminous clayey mudstones are more 

abundant in major, trace and trace elements than the surrounding 

rocks. These elements provide important information about the 

deposition processes and organic productivity of the rocks. The 

enrichment of elements from terrestrial sources such as Ti, Zr, Th, 

K, Sc, Rb and Al in the rock is unfavourable in terms of organic 

matter richness. On the other hand; elements such as Cu, Ni, Zn, Si 

(biogenic origin), P and Ba provide important information about 

biogenic productivity. When the relationship between Ti/Al and 

Na/K is analysed in the samples examined; the increase in Na/K ratio 

in all samples while the decrease in Ti/Al ratio indicates that the 

entry of detritic material into the lake environment decreases. Ni/Al 

and Cu/Al ratios may be indicators of water column efficiency. 

There is a very strong relationship between Ni/Al, Cu/Al and %TOC 

in the bituminous claystone samples of Ilgın field. In the analysed 

samples; Ti/Al and Na/K ratios increase while Si/Al ratios decrease, 

indicating that the source of SiO2 is biogenic. Palaeo-salinity Sr/Ba 

(1.32 - 5.24) ratio in Ilgın field is 2.870 and it is determined that the 

lake water was salty during the deposition of bituminous claystones. 

The fact that high P and S values generally follow a compatible trend 

with each other indicates that sulphate-reducing bacteria that destroy 

organic matter are very active in the lake bottom.In conclusion; the 

amount of organic matter (%TOC, mean: 31,24) in the claystone 

samples in Ilgın area is quite high.  

This indicates that there was no detrital input to the basin 

during the deposition of bituminous claystones in the Ilgın basin in 

the Middle Miocene (Middle Serravalian), that the upper water 

column of the lake, which has acquired saline water characteristics, 

has a very high productivity of phytoplanktonalgal productivity such 

as diatoms with Si rods and that the organic matter preservation at 

the bottom is excellent under anoxic redox conditions. 
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Introduction  

Mathematical models play a vital role in comprehending 

compression processes, system design, and performance evaluation. 

The integration of this approach with computer hardware and 

numerical methodology provides benefits such as reduced time and 

cost, extensive output, and convenience for parametric research and 
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optimization analysis (He et al., 2009). Obtaining certain parameters 

through experimental methods can be challenging, but mathematical 

models offer comparable fundamental physics for different 

installations. Consequently, the development of accurate 

mathematical models for ejectors has become a focal point in 

numerous research endeavors. A multitude of mathematical models 

have been created and utilized to examine, enhance, and create 

ejectors (He et al., 2009). This article analyzes the advancements 

achieved in the mathematical modeling of ejectors and provides a 

concise overview of notable research conducted in this field.  

Geochemical analyses and other data are essential for 

comprehending the geodynamic histories of Earth and the various 

local and global processes that occur (Keller & Schoene, 2018). The 

proliferation of global data collection is attributed to the widespread 

accessibility of techniques such as X-ray fluorescence and ICP-MS 

(Gard et al., 2019). Nevertheless, as a result of the exponential 

growth in recent publications and the substantial division of journals, 

locating and compiling this data can be arduous and time-consuming 

(Keller & Schoene, 2018). Ensuring the accessibility of this 

information is crucial for future studies to develop more reliable 

models and constrained analyses (Iwamori & Nakamura, 2015). 
Geochemical compilations have been utilized in diverse 

investigations, encompassing crustal magma reservoirs, alterations 

in mantle dynamics, regional and global tectonic chronicles, and the 

interrelations between life and the Earth (Carbotte et al., 2013). 

These findings have significant ramifications for the management of 

the environment, land utilization, and the development of mineral 

resources (Cox et al., 2018; Gard et al., 2019).  

The analysis of geochemical data is crucial for mineral 

exploration and whole-rock geochemistry because it has a 

substantial influence on the distribution of fluids, hydrothermal 

processes, and the structure of the Earth (Cheng et al., 2000; 

Carranza, 2008; Ghezelbash et al., 2020a, 2020b; Akbari et al., 

2023). Through the examination of geospatial data, it is possible to 

identify unusual trends in geochemical populations, which can aid in 



 

--43-- 

 

the identification of untapped mineral resources and enhance our 

comprehension of geological phenomena (Vriend et al., 1988; 

Bigdeli et al., 2022). Choosing suitable methods to classify 

geochemical data into meaningful categories is essential during the 

initial phases of mineral exploration. It is crucial to differentiate 

between background and anomalous classes, and unsupervised 

clustering methods such as K-means, K-medoids, and fuzzy c-means 

are frequently employed for this purpose (Daviran et al., 2020). 

Geochemical analyses, including major oxides, trace 

elements, and rare earth elements, provide crucial indicators for 

determining geological structure and making informed decisions. To 

interpret this data, diagrams are created that incorporate intricate 

mathematical elements. Like in all professional fields, the use of 

mathematical models to create diagrams and interpret geological 

structures is a widely applicable method in decision-making 

processes. Additionally, there exist simplified models, such as the 

semi-empirical model, which are designed to facilitate calculations. 

Furthermore, mathematical modeling is a highly efficient method for 

establishing a correlation between experimental results and 

empirical performance by utilizing extensive datasets. This study 

will examine the benefits of employing mathematical modeling to 

analyze rock chemistry data for geological modeling. 

Mathematical model 

Mathematical modeling is an essential tool for articulating 

scientific knowledge, which can result in new findings and 

questioning established beliefs (Forrester, 1961). The process entails 

scrutinizing, assessing, and confirming mathematical models. 

Forrester underscores the importance of a mathematical model's 

sustainability for a particular objective. Shaeffer's methodological 

approach comprises the examination of models, algorithms, data 

evaluation, sensitivity analysis, validation studies, and code 

comparison studies. Hamilton's (1991) extensive compilation of 

publications on model validation is also remarkable (Tedeschi, 

2006). 
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Assessing the precision and accuracy of forecasts, 

developing confidence, or permitting alternative models relies 

heavily on evaluating the sufficiency of the model (Tedeschi, 2006). 

Forrester (1961) highlights the importance of mathematical models' 

validity, whereas Shaeffer (1980) devised a methodical framework 

comprising six tasks: scrutinizing the model, examining the 

algorithm, evaluating the data, conducting sensitivity analysis, 

performing validation experiments, and comparing codes. 

Mathematical modeling is an essential component of 

engineering that uses mathematics to describe and analyze real-

world interactions and dynamics. It has a crucial function in domains 

such as the environment and industry, with the possibility of making 

significant contributions in multiple areas. The success of 

mathematical modeling is credited to the rapid advancement of 

scientific computation, which allows for the conversion of 

mathematical models into algorithms suitable for high-performance 

computers. Emerging fields such as information and communication 

technology, bioengineering, financial engineering, and geology 

engineering are employing mathematical modeling to effectively 

handle the intricacies of technology and enhance the speed of 

innovation (Parolini and Quarteroni). 

Mathematical modeling involves the representation of a 

system or process using mathematical equations and formulas. It 

enables the mathematical representation of real-world scenarios. The 

choice of mathematical modeling methods can vary depending on 

the specific system or process being considered. Mathematical 

modeling offers benefits in enhancing comprehension, forecasting, 

and optimization. Mathematical modeling is an effective tool that 

aids in comprehending and addressing real-life scenarios. 

Utilizing the Mathematical Model 

Mathematical modeling is applied in scientific studies 

through various methods. Below are several approaches for 

implementing mathematical modeling in scientific research: 
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1. Establishing the Theoretical Framework: Before 

commencing the study, it is imperative to comprehend the 

phenomenon or system under investigation and ascertain the 

fundamental principles that will be employed in the model. The 

process commences with a comprehensive literature review, 

followed by a meticulous examination of established scientific 

theories and a rigorous analysis of the available data. 

2. Establishing Modeling Goals and Parameters: The 

objective of modeling is to ascertain the variables, processes, or 

interactions that should be incorporated into the model. Additionally, 

it is necessary to establish the parameters of the model and ascertain 

their values, whether they are already known or estimated. 

3. Formation of Mathematical Equations: Mathematical 

equations are formulated by the established theoretical framework 

and objectives. These equations represent fundamental relationships 

that elucidate the phenomenon or process. 

4. Data Collection and Analysis: The necessary data for 

constructing and verifying the model are gathered and scrutinized. 

This step is crucial for determining the parameters of the model or 

evaluating the model's accuracy in representing the real data. 

5. Model Development and Adaptation: Typically, the initial 
model constructed is a rudimentary iteration. During this phase, 

endeavors are undertaken to enhance the model by increasing its 

complexity or adjusting it with fresh data. 

6. Simulation and Analysis: The model is utilized to conduct 

simulations or calculations and evaluate its behavior under different 

circumstances. This can be utilized to forecast forthcoming 

occurrences or alterations. 

7. Validation and Evaluation: The model that has been 

developed must undergo validation by comparing its performance 

with actual data. The evaluation of the model includes assessing its 

level of fit, predictive capacity, and accuracy. 
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8. Interpretation and Reporting of Results: The interpretation 

and reporting of results involve analyzing the outcomes of the 

modeling study and presenting the findings rigorously and 

scientifically. This can be accomplished through scientific papers, 

reports, or presentations. 

These steps encompass the fundamental procedures 

employed for the implementation of mathematical modeling in 

scientific investigations as a whole. The procedural variations may 

arise in interdisciplinary studies or across various disciplines, yet the 

fundamental principles remain analogous.  

An investigation into the mathematical modeling of rock 

geochemistry 

Rock geochemistry is a scientific discipline that focuses on 

analyzing the makeup, origin, and development of rocks. Rocks are 

cohesive geological substances that result from the amalgamation of 

minerals or mineral particles. Rock chemistry enables us to 

comprehend the chemical mechanisms accountable for the genesis 

and development of rocks. Rock chemistry is a scientific discipline 

that pertains to the study of rocks and their chemical properties, 

encompassing fields such as geology, petrology, mineralogy, and 

chemistry. Gaining knowledge about the structure, origin, and 

development of rocks enables us to acquire insights into the 

historical and transformative processes of the Earth.  

These studies employ mathematical modeling to elucidate 

the composition and characteristics of rocks, comprehend the 

processes of rock formation, and ascertain the genesis of rocks.  

The classification of mathematical models used in rock 

geochemistry studies is as follows: 

- Geochemical models are utilized to elucidate the 

compositions and characteristics of rocks. Chemical equilibrium 

models, such as those used in geology, explain the chemical 

equilibrium that governs the composition of rocks. Nevertheless, 
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their purpose is to ascertain mineralization, the configuration of 

rocks, the process by which rocks are formed, the tectonic setting, 

and the chemical degradation and alteration occurring in a particular 

area. 

- Rock formation models elucidate the processes involved in 

the creation of rocks. Models of magmatism elucidate the process by 

which igneous rocks are formed. Additionally, it addresses 

significant inquiries about geodynamic evolution, rock composition, 

and geological structure. 

- Rock genesis models: These models are utilized to ascertain 

the provenance of rocks. Isotope geochemistry models are utilized 

to ascertain the provenance of rocks, as an illustration. 

Mathematical modeling provides several benefits in the field 

of rock geochemistry studies: 

1. Simplifies Complexity: Rock geochemistry focuses on the 

interplay of numerous factors. Mathematical models can simplify 

this intricacy, facilitating the analysis of complex relationships. 

2. Predictive Capacity: Mathematical models can aid in 

forecasting rock formation and alteration processes. They can 

replicate the impacts on the composition or characteristics of rocks 

under specific circumstances. 

3. Data Analysis and Interpretation: Mathematical models 

can be employed in rock geochemistry studies to analyze large data 

sets and extract valuable insights from the data. 

4. Cost Reduction and Experiment Streamlining: 

Mathematical models offer a cost-effective alternative to expensive 

field studies and laboratory experiments. They allow for virtual 

experiments and the prediction of outcomes under specific 

conditions. 

5. Hypothesis Testing: Mathematical models can be 

employed to evaluate specific hypotheses and determine the 

precision or soundness of those hypotheses. This can facilitate the 
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testing of hypotheses or conjectures regarding the formation of 

rocks. 

6. Auxiliary Tool: Mathematical models can assist in 

supporting or elucidating data acquired through laboratory or field 

studies. By doing so, they can aid in comprehending the observed 

phenomena. 

Nevertheless, the utilization of mathematical models may 

encounter certain constraints. Models may lack a comprehensive 

representation of the intricate nature of the real world or may rely on 

specific assumptions that, in certain instances, may not accurately 

depict reality. Hence, both experimental studies and modeling hold 

significant importance. Optimally, a comprehensive methodology 

that integrates modeling techniques bolstered by empirical data can 

yield the most dependable outcomes. 

Rock geochemistry can be analyzed using chemical methods, 

which then allows the data to be mathematically modeled and 

represented using various diagrams, formulas, and distinct 

mathematical expressions. These mathematical models enable us to 

visualize the outcomes using expressions that accurately represent 

the distinct features of each analysis. Moreover, diverse graphs, 

maps, and simulations can be created utilizing distinct 

methodologies and approaches. 

The chemical analysis data can be mathematically 

represented using various equations or mathematical expressions, 

thanks to the application of mathematical modeling. These 

expressions are applicable for elucidating the dynamics and 

interconnections of geochemical processes. Mathematical models 

can provide comprehension of intricate processes, such as the 

distribution of elements or the evolution of their reactions over time. 

Moreover, these data and models can be utilized to generate 

diverse graphs, maps, and simulations. For instance, geochemical 

data can be utilized to generate graphs illustrating the distribution of 

elements. Additionally, geographic information systems (GIS) can 
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be employed to produce maps displaying geochemical properties. 

Furthermore, laboratory experiments can be validated by conducting 

simulations. 

Mathematical modelling facilitates a more profound 

comprehension and graphical depiction of the data acquired in the 

realm of rock geochemistry. Thus, geochemical analyses yield 

comprehensible results and serve as a crucial tool for comprehending 

and visualizing geological processes. 

Discussion 

The application of mathematical modeling in the study of 

rock geochemistry provides numerous invaluable advantages, 

greatly improving our comprehension and investigation of 

geological processes. This discussion will explore the numerous 

benefits that arise from incorporating mathematical models into 

studies of rock geochemistry. 

Mathematical modeling is a potent tool for interpreting and 

predicting intricate geological phenomena. These models allow 

researchers to replicate complex processes like mineral reactions, 

element migration, and geochemical cycles, offering an 

understanding into the fundamental mechanisms that govern these 

phenomena. Through the application of mathematical equations and 

simulations, scientists can gain a visual understanding of the 

progression of geological systems over time. This enables them to 

make predictions about future changes or behaviors. 

Moreover, the incorporation of mathematical models enables 

the assimilation and comprehension of various datasets. Rock 

geochemistry entails the examination of data obtained from diverse 

sources, such as field observations, laboratory experiments, and 

remote sensing. Mathematical models offer a structure to combine 

these different datasets, allowing researchers to make 

comprehensive conclusions and find connections between various 

parameters. 
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Another notable advantage is the enhancement of resource 

exploration and extraction through optimization. Mathematical 

models are utilized in industries such as mining and oil exploration 

to facilitate the identification of potential mineral or hydrocarbon 

deposits, the estimation of their size and distribution, and the 

comprehension of their chemical compositions. This optimization 

results in the implementation of more efficient and sustainable 

practices for managing resources, thereby reducing environmental 

impacts while maximizing resource extraction. 

Furthermore, the use of mathematical modeling enables the 

development and implementation of strategies for evaluating and 

addressing environmental issues. Through the simulation of various 

scenarios, these models facilitate the assessment of the ecological 

consequences associated with geological activities, such as mining 

or groundwater pollution. They aid in formulating strategies to 

alleviate pollution, forecast the dissemination of pollutants, and 

pinpoint susceptible regions, thereby enhancing the efficacy of 

environmental management and conservation endeavors. 

Moreover, these models function as a foundation for 

conducting hypothesis testing and verification. Scientists can 

evaluate theoretical frameworks by conducting simulations and 
comparing them with empirical data. This process allows them to 

validate hypotheses and enhance scientific theories in the field of 

rock geochemistry. 

The integration of mathematical modeling is crucial for 

making well-informed decisions across different industries. These 

models offer valuable insights grounded in scientific evidence, 

allowing stakeholders and policymakers to make well-informed 

decisions in various fields such as industrial applications, 

environmental policies, and hazard management.  

Gard et al. (2019) developed a comprehensive worldwide 

geochemical database by merging existing datasets and adding new 

ones as supplements. They created a system for naming, calculated 

geochemical indicators, and made estimates of physical properties. 
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Esmailzadeh et al. (2023) devised a novel MIP (Mixed 

Integer Programming) model to optimize the coordination of open-

pit and underground mining activities. They employed an allocation-

based scheduling strategy to maximize the utilization of Open-Pit 

Waste Rock (OPWR) while minimizing the expenses associated 

with waste rock haulage and mine closure. 

Shirazi et al. (2023) devised an extensive geochemical 

modeling (mathematical modeling) method to study copper 

mineralization in the Sahlabad region of Birjand, East Iran. They 

employed inductively coupled plasma mass spectrometry and 

machine learning techniques to examine 709 stream sediment 

samples. 

Sahu & Jhariya (2023) examined the present state of the 

aquifer and levels of stress, with the goal of constructing a flow 

model to comprehend the direction of groundwater flow, predict 

future conditions, and comprehend patterns of SO4 concentration. A 

3D mathematical model was created to accurately mimic the flow of 

groundwater and the concentration of sulfate in the Tantaria 

watershed in Chhattisgarh, India. 

Conclusion 

The utilization of mathematical modeling in rock 

geochemistry studies provides several advantages, such as the ability 

to make predictions, integrate data, optimize resources, assess the 

environment, test hypotheses, and support decision-making. The 

progress of technology enables the expansion of integration, 

resulting in enhanced knowledge, more precise predictions, and a 

more profound comprehension of Earth's geological processes. 

Furthermore, it impacts sectors such as mining, energy exploration, 

and environmental management by enhancing resource exploration, 

improving extraction methods, and assisting in environmental 

remediation and hazard mitigation. Mathematical models play a 

crucial role in facilitating well-informed decision-making, allowing 

stakeholders and policymakers to effectively address intricate 
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geological obstacles by relying on evidence-based guidance. Virtual 

experimentation allows for hypothesis validation and reduces 

reliance on costly fieldwork by providing a cost-effective 

alternative. 
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Advantages of Applying Machine Learning Theory in 

the Investigation of Mineral Deposits 
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Introduction  

Machine learning algorithms are now essential in mineral 

exploration as they aid in comprehending and streamlining the 

mineralization process (Singer and Kouda, 1999; Kreuzer et al., 

2008; Chen and Zhao, 2011; Liu et al., 2011; Ford and Hart, 2013; 

Ghezelbash et al., 2019; Davies et al., 2020; Kreuzer et al., 2020; 

Parsa and Carranza, 2021; Yousefi et al., 2021). These algorithms 

are employed for the analysis of extensive datasets, including 

geological data obtained from volcanic rocks, protoliths derived 
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from metamorphic rocks, and areas with potential for mineral 

prospecting (Petrelli and Perugini, 2016; Ueki et al., 2018; Ge et al., 

2021; Zhong et al., 2021a). Nevertheless, these techniques 

frequently prove to be excessively intricate to be executed 

flawlessly, thereby posing challenges in extracting mineralization 

criteria from intricate exploration data (Jessell et al., 2014; Witherly, 

2014; Qin and Liu, 2018; Liu and Qin, 2019). 

To tackle this challenge, computational modeling, which 

includes geometric modeling, geodynamic simulation, and statistical 

and machine learning (ML) modeling, has emerged as a strong 

supplement to conventional methods (Gregory et al., 2019; Saha et 

al., 2021). Supervised machine learning algorithms, such as Random 

Forest (RF), XGBoost, lightGBM, support vector machine (SVM), 

and artificial neural networks (ANN), have been employed to 

enhance the precision and dependability of classifications (Zhong et 

al., 2021a; Wang et al., 2021a). Nevertheless, the classification 

model produced by these algorithms may seem opaque, posing 

challenges in establishing connections between geological and/or 

geochemical interpretation and the characteristics of the original data 

and predicted results (Li et al., 2023). 

Various techniques, including RF's feature importance based 
on the Gini index, incremental feature addition, and Shapley 

Additive explanations, have been utilized to assess the relative 

significance of elements (Louppe, 2014). These methods enhance 

the comprehension of mineral geochemistry across diverse 

geological contexts. In general, machine learning can transform 

mineral exploration by offering more precise and dependable 

categorizations of mineralization and geological characteristics 

(Gregory et al., 2019; Saha et al., 2021; Zhong et al., 2021b). 

The processing of geochemical data has gained significant 

importance in recent years to detect anomalies associated with 

mineralization (Qin and Liu, 2018; Liu and Qin, 2019). Supervised 

machine learning algorithms are being explored as a promising 

technology for analyzing geoscience data. This includes tasks such 
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as distinguishing different tectonic settings, identifying the original 

rock types, and determining the origin of minerals like apatite, 

pyrite, magnetite, biotite, quartz, and zircon (Gregory et al., 2019; 

Huang et al., 2019; O’Sullivan et al., 2020; Saha et al., 2021; Wang 

et al., 2021b; Zhong et al., 2021b; Zheng et al., 2022; Hu et al., 

2022). 

The process of discovering and exploring mineral deposits is 

intricately complex, and the application of machine learning theory 

can yield numerous advantages in this domain. The utilization of 

machine learning is progressively prevalent in the investigation of 

mineral deposits. This enables mining companies to generate more 

precise forecasts that are more efficient and impactful in comparison 

to conventional approaches. This study aims to elucidate the impact 

of this technique on mineral exploration. 

Machine Learning (ML) 

Artificial intelligence (AI) is a discipline that concentrates on 

the advancement of computer systems with the ability to carry out 

tasks that necessitate human intelligence, including visual 

perception, speech recognition, decision-making, and language 

translation (Russell and Norvig 2021). At first, AI depended on 

manually created rules to encode established connections, processes, 

and decision-making logic into intelligent systems. Nevertheless, the 

emergence of new programming frameworks, the abundance of data, 

and the advancement in computing power have led to a growing 

trend of constructing analytical models through machine learning 

(ML) (Brynjolfsson and McAfee 2017; Goodfellow et al. 2016). 

This approach alleviates humans from the task of converting their 

knowledge into machine-readable formats, resulting in a more 

streamlined development process for intelligent systems (Ula, 2020). 

Machine learning and deep learning are prevalent artificial 

intelligence methodologies, categorized into generative models and 

discriminative models (Gupta, 2020). AI, or Artificial Intelligence, 

is a branch of the IT sector that focuses on the development of 
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machines that can mimic human behavior. Its primary objective is to 

create intelligent computer programs. 

Machine learning (ML) is a method that trains machines to 

effectively process data, particularly in cases where the information 

is challenging to interpret. Due to the plethora of accessible datasets, 

there is a growing demand for machine learning (ML), which is 

being employed across diverse industries to extract pertinent 

information. Machine learning utilizes a range of algorithms to 

address data-related issues, with no universally superior algorithm 

that suits all scenarios. Diverse methodologies are employed to 

surmount the obstacles posed by extensive data sets (Mahesh, 2020). 

Simultaneously, the progress in machine learning has driven the 

emergence of intelligent systems possessing cognitive abilities 

similar to humans. These systems have become prevalent in both our 

professional and personal lives, influencing various aspects of 

networked interactions in electronic markets (Fischer et al., 2020). 

Machine learning (ML) refers to a computer program that 

enhances its performance by gaining experience in specific tasks and 

metrics (Jordan and Mitchell 2015). It uses iterative algorithms to 

automate the process of constructing analytical models for cognitive 

tasks such as object detection or analysis, based on problem-specific 
training data. Machine learning is especially advantageous for tasks 

involving data with a large number of dimensions, such as 

classification, regression, and clustering. It enhances the ability to 

generate dependable and consistent decisions by acquiring 

knowledge from past calculations and identifying patterns from 

extensive databases. ML algorithms have proven effective in diverse 

domains such as mineral deposits, image processing, social analysis, 

speech and language translation, among others. There is a wide range 

of machine learning algorithms that can be used for learning 

(Bishop, 2006). 

The mining industry, like many other sectors, is increasingly 

adopting machine learning, and this adoption is projected to persist 

in the foreseeable future. Greater implementation of this technology 
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could facilitate the mining industry to become more efficient and 

lucrative. By considering multiple criteria in decision-making 

processes and mineral exploration studies, one can achieve efficient, 

environmentally friendly, and outcome-focused outcomes. 

Mineral Exploration 

Mineral exploration involves the systematic investigation of 

underground mineral resources to assess their economic viability for 

exploitation. Geological, geophysical, and satellite data are 

extensively utilized in these studies. 

Geological data form the foundation of mineral exploration. 

This dataset offers insights into the genesis, composition, and 

development of the Earth's crust. Geological data can be acquired 

through field observations, geological maps, geochemistry, isotopes, 

fluid inclusions, geological reports, and other geological sources. 

Geological data can be utilized in mineral exploration for the 

subsequent objectives: 

1. To ascertain the geological conditions under which 

mineral resources are formed 

2. To assess the economic viability of mineral resources 

3. To ascertain the spatial allocation of mineral resources 

Geophysical data refers to techniques employed to examine 

the physical characteristics of the underground. These methods 

enable the determination of the subsurface's structure and properties 

by measuring the density, permeability, electrical conductivity, and 

magnetic properties of rocks and minerals. Geophysical data can be 

utilized in mineral exploration for the subsequent objectives: 

1. To ascertain the geographical areas where mineral 

resources are situated 

2. To assess the magnitude and configuration of mineral 

reserves 
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3. Evaluate the caliber of mineral resources 

Satellite data refers to visual representations of the Earth 

captured from outer space. This data enables the determination of the 

topography, vegetation, land use, and other attributes of the Earth's 

surface. Satellite data is utilized in mineral exploration for the 

following objectives: 

1. Detect and recognize visible signs of mineral deposits on 

the Earth's surface. 

2. To aid in the strategic organization of mineral exploration 

endeavors 

3. To aid in the assessment of findings from mineral 

exploration 

The integration of geological, geophysical, and satellite data 

is commonly employed in mineral exploration. By employing this 

approach, it becomes feasible to precisely and dependably identify 

and assess mineral resources. 

Illustrative use cases 

Geological data: Through field observations, surface 

manifestations of mineral deposits can be identified. Lead-zinc 

deposits typically manifest as minerals containing sulfur when 

observed on the surface. Geological observations in the field can be 

used to ascertain the existence of these minerals. 

Geophysical data: Seismic methods are extensively 

employed in geophysics to ascertain the composition and 

characteristics of subsurface layers. Seismic methods can be 

employed to ascertain the existence and precise positioning of 

subterranean mineral deposits. 

Satellite data: Satellite imagery is utilized to detect surface 

characteristics in the field of mineral exploration. Using infrared 

satellite images, it is possible to detect variations in vegetation. 

These variations could be linked to visible signs of mineral deposits 

on the surface. 



 

--62-- 

 

Presently, the technologies employed in mineral exploration 

are steadily advancing. These advancements enable the 

implementation of mineral exploration activities with greater 

efficiency and effectiveness. 

Machine Learning Theory in the Investigation of Mineral 

Deposits 

Mineral exploration is a comprehensive process that is 

influenced by various geological, geochemical, and geophysical 
factors. The application of Machine Learning (ML) theory has 

become a potent tool for making decisions in the field of mineral 

exploration. Machine learning techniques, such as neural networks, 

random forests, and support vector machines, facilitate the detection 

of patterns and correlations in large datasets, allowing for systematic 

investigation. ML algorithms facilitate the integration and analysis 

of various datasets, allowing geologists and exploration teams to 

develop comprehensive models that improve comprehension of 

geological environments.  

ML techniques are particularly effective in the classification 

of mineral deposits. Machine learning models can be trained to 

categorize various types of deposits by analyzing geological 

characteristics, geochemical compositions, and other distinctive 

factors. ML methodologies enhance production optimization 

through the prediction of production rates, identification of areas for 

operational improvement, and optimization of resource extraction 

processes. Nevertheless, achieving successful integration 

necessitates a sophisticated comprehension of geological principles 

and data science techniques. The successful application of geology 

relies heavily on the collaborative efforts between experts in the field 

and data scientists. The prudent incorporation of machine learning 

techniques has the potential to revolutionize the process of 

exploring, evaluating, and extracting mineral deposits, resulting in 

improved efficiency and sustainability in the mining sector. 

 



 

--63-- 

 

Exploration process of Mineral Deposits with ML 

The process of exploring and prospecting mineral deposits is 

highly intricate, and the application of machine learning theory can 

yield numerous advantages in this domain. Machine learning 

techniques can offer effective solutions in decision-making 

processes, exploration studies, classification of mineral deposits, and 

mineral production, as in various professional fields. The following 

text describes this process. 

Data Analysis and Processing:  

- Utilizing machine learning, large volumes of data obtained 

during the mineral exploration process can be analyzed and 

processed through the technique of big data analysis. This may 

encompass soil samples, geophysical data, geochemical data, and 

other geographical data. 

- Pattern recognition: Machine learning can be employed to 

identify and categorize patterns that are indicative of the presence of 

minerals. This can facilitate the correlation of mineral deposits with 

distinct geographical characteristics. 

Image processing and mapping: 

- Satellite Imagery: Utilizing satellite imagery enables the 

identification of mineral deposits. Machine learning can assist in the 

identification of potential mineral deposits by analyzing distinctive 

characteristics present in these images. 

- Mapping and Classification: Machine learning can be 

employed in the mineral exploration process to detect and categorize 

terrain characteristics in various regions. This can facilitate the 

identification of specific categories of mineral deposits. 

Modeling and forecasting: 

- Geophysical and geochemical data can be utilized for 

modeling purposes. Machine learning models can analyze these data 
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sets and accurately predict the location and dimensions of mineral 

deposits. 

- Machine learning can be employed to evaluate risks in the 

mineral exploration process and identify the most effective 

exploration strategies. 

Automated Decision Support Systems: 

- Utilizing Artificial Intelligence for Decision Support: 

Machine learning can assist in making decisions during the mineral 

exploration process. This can facilitate the automation of decisions, 

such as the selection of sites, planning of drilling activities, and 

allocation of resources. 

The utilization of machine learning in the exploration of 

mineral deposits offers numerous benefits. These benefits facilitate 

the process of mineral exploration and contribute to its long-term 

viability. 

- Enhanced precision: Machine learning models exhibit 

superior accuracy in making predictions compared to conventional 

approaches. This enables miners to discover additional reserves 

while minimizing resource expenditure. 

Utilizing machine learning for mineral exploration 

- Enhanced search efficiency: Machine learning enables 
miners to precisely focus their search efforts on the desired area. This 

facilitates the discovery of additional reserves by mining companies, 

requiring less exertion and financial resources. 

- Unearthing novel opportunities: Machine learning enables 

miners to identify previously unknown mineral deposits that are not 

detectable using conventional methods. This has the potential to 

generate fresh prospects for the mining sector. 

Discussion 

Machine Learning (ML) has transformed the investigation of 

mineral deposits by improving effectiveness, precision, and 
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comprehensiveness. Machine learning algorithms can handle large 

and diverse datasets from various sources. This allows for the 

development of comprehensive models that surpass traditional 

methods. Machine learning simplifies the process of identifying 

complex patterns and correlations in geological, geochemical, and 

geophysical data, allowing geologists to more precisely pinpoint 

potential mineralization zones. Machine learning-based predictive 

modeling is crucial for optimizing exploration strategies by 

prioritizing exploration targets, efficiently allocating resources, and 

reducing exploration costs. The integration of data from multiple 

sources and scales enhances our comprehensive comprehension of 

geological environments, thereby enabling well-informed decision-

making in exploration efforts. Machine learning techniques also aid 

in the recognition and classification of different kinds of mineral 

deposits, facilitating the creation of models that can distinguish 

between unique geological characteristics and compositions. 

Predictive modeling enables the prediction of production rates, the 

optimization of extraction methods, and the identification of 

opportunities for operational improvement. This improves 

operational efficiency and supports the management of resources in 

a sustainable manner. 

Machine learning (ML) is an expanding discipline in 

economic geology, with current research investigating its use in 

categorization (Gregory et al., 2019; Zhong et al., 2021a) and the 

identification of unusual geochemical patterns (Zuo, 2017). 

Nevertheless, economic geologists lacking a background in machine 

learning have faced limited availability of ML models to validate 

predictions against real-world geological data in practical scenarios. 

The study conducted by Sun et al. (2022) demonstrated the efficacy 

of machine learning techniques combined with mineral 

geochemistry in determining the genesis of the Qingchengzi Pb-Zn 

ore field in China. The deposits in this area are either 

metamorphosed sedimentary exhalative (SEDEX) or magmatic-

hydrothermal fluid-related. 
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Geological mapping is a crucial process in mineral 

exploration. By utilizing both machine learning techniques and 

remote sensing data, it is possible to efficiently and affordably map 

lithological units, alteration zones, structures, and indicator minerals 

that are linked to mineral deposits (Sun and Scanlon, 2019). The 

rapid progress in obtaining high-resolution remote sensing data has 

resulted in a significant increase in big data (Sun and Scanlon, 2019), 

which presents new possibilities for discovery based on data analysis 

(Gewali et al., 2018). 

Shirmard et al., 2022 present a thorough examination of how 

machine learning techniques are used in processing remote sensing 

data to model geological patterns and investigate ore deposits. The 

machine learning methods are categorized into five groups: 

dimensionality reduction, classification, clustering, regression, and 

deep learning methods. The paper also addresses obstacles and 

potential future research, with an interdisciplinary emphasis on 

recent advanced techniques in deep learning, including graph deep 

learning methods, Bayesian deep learning, variational autoencoders, 

and transformer recurrent neural networks. 

Conclusion 

Machine learning (ML) is essential in the field of mineral 

exploration as it enables data-driven decision-making, precise 

predictive modeling, and efficient classification of deposits. 

Nevertheless, the obstacles such as the accuracy of data and the 

comprehensibility of machine learning models necessitate a 

collaborative effort between geologists and data scientists from 

different fields. To overcome these challenges, it is crucial to 

enhance ML algorithms and promote collaboration among domain 

experts. The advancement of machine learning-driven 

methodologies offers great potential for the mining industry, 

expediting the identification of deposits and guaranteeing the 

implementation of environmentally responsible extraction 

techniques.



 

--67-- 

 

REFERENCES 

Bishop, C. M. (2006). Pattern recognition and machine 

learning (Information science and statistics). Springer-Verlag New 

York, Inc. 

Brynjolfsson, E., & McAfee, A. (2017). The business of 

artificial intelligence. Harvard Business Review, 1–20. 

Chen, Q., & Zhao, P., (2011). Singularity theories and 

methods for characterizing mineralization processes and mapping 

geoanomalies for mineral deposit prediction. Geoscience Frontiers 

2, 67–79. 

Davies, R.S., David, I., Groves, D.I., Trencha, A., & Dentith, 

M. (2020). Towards producing mineral resource-potential maps 

within a mineral systems framework, with emphasis on Australian 

orogenic gold systems. Ore Geology Reviews 119, 103369. 

Fischer, M., Heim, D., Hofmann, A., Janiesch, C., Klima, C., 

& Winkelmann, A. (2020). A taxonomy and archetypes of smart 

services for smart living. Electronic Markets, 30(1), 131–149. 

https:// doi.org/10.1007/s12525-019-00384-5. 

Ford, A., & Hart, C.J. (2013). Mineral potential mapping in 

frontier regions: A Mongolian case study. Ore Geology Reviews 51, 

15–26. 

Ge, C., Huo, J., Gu, H.O., Wang, F., Sun, H., Li, X., Li, W., 

& Yuan, F. (2021). Tectonic discrimination and application based on 

convolution neural network and incomplete big data. J. Geochem. 

Explor. 220, 106662. https://doi.org/10.1016/j. gexplo.2020.106662. 

Gewali, U.B., Monteiro, S.T., & Saber, E. (2018). Machine 

Learning Based Hyperspectral Image Analysis: A survey. 

Ghezelbash, R., Maghsoudi, A., & Carranza, E.J.M. (2019). 

An Improved data-driven multiple criteria decision-making 

procedure for spatial modeling of mineral prospectivity: Adaption of 



 

--68-- 

 

prediction–area plot and logistic functions. Natural Resources 

Research 28, 1299–1316.  

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep 

learning. The MIT Press. 

Gregory, D.D., Cracknell, M.J., Large, R.R., McGoldrick, P., 

Kuhn, S., Maslennikov, V.V., Baker, M.J., Fox, N., Belousov, I., 

Figueroa, M.C., Steadman, J.A., Fabris, A.J., & Lyons, T.W., 

(2019). Distinguishing ore deposit type and barren sedimentary 

pyrite using laser ablation inductively coupled plasma-mass 

spectrometry trace element data and statistical analysis of large data 

sets. Econ. Geol. 114, 771– 786. 

https://doi.org/10.5382/econgeo.4654. 

Gupta, R. (2020). A Survey on Machine Learning 

Approaches and Its Techniques, 2020 IEEE International Students’ 

Conference on Electrical, Electronics and Computer Science 

(SCEECS), 2020, pp. 1-6, doi: 10.1109/ SCEECS48394.2020.190. 

Hu, B., Zeng, L.P., Liao, W., Wen, G., Hu, H., Li, M.Y.H., 

& Zhao, X.F., (2022). The origin and discrimination of High-Ti 

magnetite in magmatic-hydrothermal systems: Insight from machine 

learning analysis. Econ. Geol. 117 (7), 1613–1627. 

https://doi.org/10.5382/econgeo.4946. 

Huang, X.W., Boutroy, E., Makvandi, S., Beaudoin, G., 

Corriveau, L., & De Toni, A.F., (2019). Trace element composition 

of iron oxides from IOCG and IOA deposits: relationship to 

hydrothermal alteration and deposit subtypes. Miner. Deposita 54, 

525–552. https://doi.org/10.1007/s00126-018-0825-1. 

Jessell, M., Ailleres, L., Kemp, E., Lindsay, M., & 

Wellmann, F. (2014). Next generation three-dimensional geologic 

modeling and inversion. In: Kelley, K.D., Golden, H.C. (Eds.), 

Building Exploration Capability for the 21st Century. Society of 

Economic Geologists, pp. 261–272. 



 

--69-- 

 

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: 

Trends, perspectives, and prospects. Science, 349(6245), 255–260. 

https://doi. org/10.1126/science.aaa8415. 

Kreuzer, O.P., Etheridge, M.A., Guj, P., McMahon, M.E., & 

Holden, D. (2008). Linking mineral deposit models to quantitative 

risk analysis and decision-making in exploration. Economic 

Geology 103, 829–850.  

Kreuzer, O.P., Yousefi, M., & Nykanen, V. (2020). 

Introduction to the special issue on spatial modelling and analysis of 

ore forming processes in mineral exploration targeting. Ore Geology 

Reviews 109, 10339. https://doi.org/10.1016/j. 

oregeorev.2020.103391. 

Li, X.M., Zhang, Y.X., Li, K.Z., Zhao, X.F., Zuo, R.G., Xiao, 

F., & Zheng, Y. (2023). Discrimination of Pb-Zn deposit types using 

sphalerite geochemistry: New insights from machine learning 

algorithm, Geoscience Frontiers, Volume 14, Issue 4, 101580, ISSN 

1674-9871, https://doi.org/10.1016/j.gsf.2023.101580. 

Liu, L., Wan, C., Zhao, C., & Zhao, Y., (2011). Geodynamic 

constraints on orebody localization in the Anqing orefield, China: 

Computational modeling and facilitating predictive exploration of 

deep deposits. Ore Geology Reviews 43, 249–263. 

Liu, L., & Qin, Y. (2019). 3D prediction by MLAs based on 

computational modeling in maturely explored area: A case study in 

Anqing orefield, China [ext. abs.]. in: Life with Ore Deposits on 

Earth: Proceedings of the 15th SGA Biennial Meeting, Glasgow, 

Scotland, 1278-1281. 

Louppe, G., (2014). Understanding random forests: From 

Theory to Practice. Ph.D thesis, University of Liège, Belgium. 

Mahesh, B. (2020). Machine Learning Algorithms-A 

Review. International Journal of Science and Research, 9, 381-386. 

O’Sullivan, G., Chew, D., Kenny, G., Henrichs, I., & 

Mulligan, D. (2020). The trace element composition of apatite and 



 

--70-- 

 

its application to detrital provenance studies. Earth Sci. Rev. 201, 

103044. https://doi.org/10.1016/j.earscirev.2019.103044. 

Parsa, M., & Carranza, E.J.M. (2021). Modulating the 

impacts of stochastic uncertainties linked to deposit locations in 

data-driven predictive mapping of mineral prospectivity. Natural 

Resources Research 30, 3081–3097. 

Petrelli, M., & Perugini, D. (2016). Solving petrological 

problems through machine learning: the study case of tectonic 

discrimination using geochemical and isotopic data. Contrib. Miner. 

Petrol. 81, 171. https://doi.org/10.1007/s00410- 016-1292-2. 

Qin, Y., & Liu, L. (2018). Quantitative 3D association of 

geological factors and geophysical fields with mineralization and its 

significance for ore prediction: An example from Anqing orefield, 

China. Mineral 8 (e 300), https://doi.org/10.3390/min8070300. 

Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A 

modern approach (4th ed.). Pearson. 

Saha, R., Upadhyay, D., & Mishra, B. (2021). Discriminating 

tectonic setting of igneous rocks using biotite major element 

chemistry — A machine learning approach. Geochem. Geophys. 

Geosyst. 22, e2021GC010053. https://doi.org/10.1029/ 

2021GC010053. 

Shirmard, H., Ehsan Farahbakhsh, R. Müller, D., & Chandra, 

R. (2022). A review of machine learning in processing remote 

sensing data for mineral exploration, Remote Sensing of 

Environment, Volume 268, 112750, ISSN 0034-4257, 

https://doi.org/10.1016/j.rse.2021.112750. 

Singer, D.A., & Kouda, R. (1999). Examining risk in mineral 

exploration. Nature Resources Research 8, 111–122.  

Sun, G., Zeng, Q., & Zhou, X.J. (2022). Machine learning 

coupled with mineral geochemistry reveals the origin of ore deposits. 

Ore Geology Reviews. 142, 104753, ISSN 0169-1368, 

https://doi.org/10.1016/j.oregeorev.2022.104753. 



 

--71-- 

 

Sun, A.Y., & Scanlon, B.R. (2019). How can big data and 

machine learning benefit environment and water management: a 

survey of methods, applications, and future directions. Environ. Res. 

Lett. 14, 73001. https://doi.org/10.1088/1748-9326/ ab1b7d 

Ueki, K., Hino, H., & Kuwatani, T. (2018). Geochemical 

discrimination and characteristics of magmatic tectonic settings: A 

machine-learningbased approach. Geochem. Geophys. Geosyst. 19, 

1327–1347. https://doi.org/ 10.1029/2017GC007401. 

Ula, M. (2020). A Survey on The Accuracy of Machine 

Learning Techniques for Intrusion and Anomaly Detection on Public 

Data Sets. 2020 International Conference on Data Science, Artificial 

Intelligence, and Business Analytics (DATABIA) 2020 19 27 

10.1109/DATABIA50434.2020.9190436 

Wang, Y., Qiu, K.F., Mu¨ller, A., Hou, Z.L., Zhu, Z.H., & 

Yu, H.C., (2021b). Machine learning prediction of quartz forming-

environments. J. Geophys. Res. Solid Earth 126. 

https://doi.org/10.1029/2021JB021925.  

Wang, H., Ye, L., Hu, Y., Wei, C., Li, Z., Huang, Z., & 

Shuang, Y., (2021a). Trace element characteristics in sphalerites 

from the Laochangping Pb-Zn deposit in the Southeastern 

Chongqing. Acta. Mineral. Sin. 41, 623–634. https://doi.org/ 
10.16461/j.cnki.1000-4734.2021.41.083. (in Chinese with English 

abstract) 

Witherly, K. (2014). Geophysical expressions of ore systems 

— Our current understanding. in: Kelley, K. D., Golden, H. C., 

(Eds.), Building Exploration Capability for the 21st Century, Society 

of Economic Geologists, 176-208. 

Yousefi, M., Carranza, E.J.M., Kreuzer, O.P., Nyk¨ anen, V., 

Hronsky, J.M.A., & Mihalasky, M.J. (2021). Data analysis methods 

for prospectivity modelling and applies to mineral exploration 

targeting: State-of-the-art and outlook. Journal of Geochemical 

Exploration 229, 106839. https://doi.org/10.1016/j. 

gexplo.2021.106839. 



 

--72-- 

 

Zheng, D., Wu, S., Ma, C., Xiang, L., Hou, L., Chen, A., & 

Hou, M. (2022). Zircon classification from cathodoluminescence 

images using deep learning. Geosci. Front. 13 (6), 101436. 

https://doi.org/10.1016/j.gsf.2022.101436. 

Zhong, R., Deng, Y., & Yu, C., (2021a). Multi-layer 

perceptron-based tectonic discrimination of basaltic rocks and an 

application on the Paleoproterozoic Xiong’er volcanic province in 

the North China Craton. Comput. Geosci. 149, 104717. 

https://doi.org/10.1016/j.cageo.2021.104717. 

Zhong, R., Deng, Y., Li, W., Danyushevsky, L.V., Cracknell, 

M.J., Belousov, I., Chen, Y., & Li, L., (2021b). Revealing the multi-

stage ore-forming history of a mineral deposit using pyrite 

geochemistry and machine learning-based data interpretation. Ore 

Geol. Rev. 133, 104079. 

https://doi.org/10.1016/j.oregeorev.2021.104079. 

Zuo, R. (2017). Machine Learning of Mineralization-Related 

Geochemical Anomalies: A Review of Potential Methods. Nat. 

Resour. Res. 26 (4), 457–464. 

 



 

--73-- 

 

 

 

CHAPTER V 

 

 

Evaluation Of Gumushane Chrome Valley Şamanlı 

Chapel In Terms Of Ground Properties 

 

 

 

 

Mahmut SARI1 

Nurgül ŞENTÜRK 2 
 

Introduction 

The ground properties of historical buildings and whether 

they were built according to the underground conditions of the area 

where they were built can be investigated using geophysical methods 

without damaging these structures. Prior to commencing the repair 

of ancient buildings, it is imperative to ascertain the ground 

properties (Sert et al., 2015). Significant structural damages 
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observed in historical buildings, near-vertical cracks or splits due to 

ground settlements, and deformations related to earthquakes are the 

important ground problems encountered in these and similar 

structures (Erten and Mısırlı, 2023; Yüksel, 2009). Historical 

buildings are generally structures built using the masonry technique. 

Since there are no skeletal systems, all walls act as load-bearing 

curtains. While they exhibit remarkable resistance to compressive 

loads owing to their substantial structural weight, they typically 

struggle to withstand tensile stresses. As a result of these factors, 

deformations can arise from horizontal forces, such as earthquakes, 

in our country, which is situated on active fault lines (Akbaş and 

Çalışkan., 2023; Ma et al., 2022; Cengiz, 2022; Schmidt et al., 2015; 

Rosendahl et al., 2014; Sala et al., 2012; Gaffney and Gaffney, 2011; 

Gaffney, 2008; Linford and Canti, 2001).Climate-related rainfall 

regime causes floods in irregular regions and serious damage to 

stone arches. Settlement damage occurring on the floor can affect the 

entire system and cause cracks. In addition to all these effects, faulty 

repairs caused by humans, wars and fires cause deformation and 

deterioration of historical buildings (Murat and Yardımlı, 2021). 

The Şamanlı chapel in the Şamanlı District within the Krom 

Valley of Yağlıdere Village was built on a low hill on a road 
surrounding the village. This study aimed to determine the ground 

properties of Şamanlı Chapel, including the locations and geological 

structure of the underground layers. Seismic methods, which are 

geophysical techniques, were employed to determine the seismic 

velocities, elastic properties, and dynamic parameters of the layers. 

As a result, the underground situation of the chapel was revealed. An 

assessment was conducted to determine if the evident structural 

faults in the Şamanlı chapel were caused by the ground. 

Geology of Study Area 

Gümüşhane is situated in the Eastern Black Sea Region and 

has borders with Bayburt to the east, Giresun to the west, Trabzon to 

the north, and Erzincan to the south. Gümüşhane has an average 

altitude of 1210 meters above sea level. The study location is situated 
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in the chrome valley inside the confines of Yağlıdere village, Merkez 

district, Gümüşhane province (Figure 1).  

 

Figure 1. Geotectonic location of the study area (Bektas et al., 

1987) 

In the research region, there are exposed rock units that 

formed throughout the Paleozoic-Quaternary time period. 

Magmatism, which began in the Liassic period and continued until 

the end of the Eocene, is a typical occurrence (Ketin, 1950; Çoğulu, 

1970). Additionally, volcanic and indurative rocks, as well as 

volcano-sedimentary rocks, are also present. Soot sedimentary 

deposits formed during periods of magmatic activity cessation 

(Yılmaz, 1972; Eren, 1983; Topuz vd., 2010). 



 

--76-- 

 

In this part of the Eastern Pontides, sequences with different 

lithostratigraphic features are observed, namely the northern zone 

and the southern zone (Ketin, 1966). In the northern zone, from 

bottom to top, Paleozoic gneiss, micaschist, chloriteschist, etc. 

Metamorphites consisting of rocks, Liassic basalt, andesite, 

conglomerate, sandstone and marl etc. Hamurkesen formation 

consisting of rock types, Berdiga formation consisting of Upper 

Jurassic-Lower Cretaceous aged limestones, Upper Cretaceous aged 

basalt, andesite, pyroclastic, sandstone etc. Çatak formation 

consisting of rock types, Kızılkaya formation consisting of 

rhyodacite, dacite and pyroclastics, Kaçkar granitoid-I, basalt, 

andesite, pyroclastic, mudstone, sandstone, marl, etc. Çağlayan 

formation consisting of rock types, Çayırbağ formation consisting of 

rhyolite, rhyodacite and pyroclastics, Bakırköy formation consisting 

of Paleocene aged sandstone, marl and clayey limestone, Eocene 

aged Kaçkar granitoid-II and Kabaköy formation consisting of 

andesite, basalt and pyroclastics. The southern zone exhibits the 

Hamurkesen (Ağar, 1977) and Berdiga formations, while the 

northern zone is characterized by the Kaçkar granitoid-I-II and 

Kabaköy formation. In contrast, the Mescitli formation is present in 

a distinct manner (Figure 2).  
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Figure 2. Geological map of the study area (modified from MTA 

geological map) 

Methodology and Instrumentation 

Seismic Refraction and Multi-Channel Surface Wave 

(MASW) measurements were conducted on a road profile adjacent 

to the Şamanlı Chapel in the research region (Figure 3).  
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Figure 3. The present-day photographs of Şamanlı Chapel 
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In the measurements taken, Vp and Vs velocity information 

was obtained from a distance of 78 m and a depth of approximately 

30 m. The data gathering process involved the utilization of a 

Geometrics brand seismograph instrument with 24 channels, vertical 

component receivers with a frequency of 4.5 Hz, an 8 kg 

sledgehammer, and an iron table with a radius of 25 cm. At each shot 

location, four vertical stacks were constructed to enhance the signal-

to-noise ratio of the seismic signal (Figure 4).  

 

Figure 4. Seismic refraction and MASW methods line direction 

measurement layout 

The seismic refraction and MASW data were sampled at 

intervals of 0.250 ms and 0.5 ms, respectively. The recording time 

for the data was 0.5s for seismic refraction and 1s for MASW. The 

offset interval for the data was 3m for seismic refraction and 9m for 

MASW.  In order to evaluate the seismic refraction data upon first 

arrival, shots were made from the beginning, end and middle of the 

profile. No filter was used during data collection. 



 

--80-- 

 

Using the Vp and Vs velocities of the layers in each profile, 

dynamic elasticity modulus (Edyn) and dynamic poisson ratio (νdyn) 

values were calculated with the help of equations 1, 2 and 3 

suggested by Bowles (1988) (Table 1). The shear modulus value was 

determined with the help of empirical equation number 3 suggested 

by Keçeli (2012). The density value was determined with the help of 

empirical equation number 4 suggested by Keçeli (2012). 

dyn = (Vp 
2 -2Vs 

2 ) / 2(Vp 
2 -Vs 

2 )     (Eq.1)  

Edyn =  (3Vp 
2 – 4Vs 

2 ) / (Vp 
2 – Vs 

2 )   (Eq.2)  

 = ρ Vs 
2 /100       (Eq.3)  

ρ = 0.44Vs 
0,25        (Eq.4)  

Here, Vp: P wave velocity (m/s), Vs: S wave velocity (m/s), 

ρ: density (gr/cm3), υ: Poisson ratio, : shear modulus (kg/cm2) and 

Em is the modulus of elasticity (kg/cm2). 

Result and Discussions 

Seismic refraction and MASW data were evaluated with the 

SeisImager program. After the first arrival times were correctly 

peaked in the seismic refraction analyses, the two-dimensional 

seismic velocity depth section of the shallow underground structure 

was obtained by subjecting it to inversion processing in the computer 

environment (Figure 5).  

 

Figure 5. Two-dimensional Seismic refraction velocity and depth 

section 
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In MASW analyses, phase velocity and dispersion curves 

were determined by subjecting them to frequency-wavenumber 

analysis, and 1-dimensional S-wave velocity values varying with 

underground depth were obtained (Figure 6). The research area 

involved seismic measurements to determine the Vp and Vs wave 

velocities of the units within the shallow subsurface structure. The 

average Vp wave velocity value for the 1st Layer shown in green is 

1470 m/s, Vs wave velocity value is 801 m/s. For the 2nd layer 

shown in red, the average Vp wave velocity value was determined as 

2510 m/s and the Vs wave velocity value was 1377 m/s. Engineering 

parameters calculated based on velocity values obtained from 

geophysical methods are given in Table 1. 

 

Figure 6. 1-dimensional MASW velocity and depth section 
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Table 1. Engineering parameters obtained in geophysical methods 

DYNAMIC AND ELASTIC PARAMETERS 

Layer No. Vp 
(m/sec) 

Vs (m/sec) Vp / Vs Layer 
Thickness (m) 

1 1470 801 1,84 7,50 

2 2510 1377 1,82 30,50 

Density Poisson's 
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g
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Taking into account the shear wave speed determined by 

taking MASW measurements on 1 line covering the examination 

area next to the Şamanlı chapel (TBDY, 2018), the units of the 

Hamurkesen formation according to the ground class in the Turkish 

Building Earthquake Regulation (TBDY) table; In the light of the 

information obtained as a result of MASW measurements, it was 

determined that the soil type with an average speed of Vs30m of 

1167.7 m/s was in the ZB "Less weathered, medium solid rocks" 

group. 

The closest active fault to the study area is KAFZ and the 

distance to the active fault varies between 70-80 km. Due to its 

proximity to the NAFZ, the study area is a region that has the 

potential to be affected by major earthquakes that may occur in this 

zone. 

It is seen that the dominant period obtained from seismic 

velocity values in the study area is 0.1 s, and the TA and TB values 

of this period are 0.07 and 0.15 s, respectively. These values show 

the Z1 soil class according to the TBDY. 

When the engineering parameters obtained from all 

geophysical methods were evaluated, it was concluded that there was 

no damage caused by any bad ground conditions, as the ground of 
the Şamanlı Chapel was built on a very solid, tight and high-strength 

rock ground. The visible structural damages are believed to be the 

result of anthropogenic factors, such as water infiltration, the decay 

of stones due to their overall deterioration, and the presence of clay 

layers or other foreign substances. These factors lead to ruptures and 

separation in the affected areas. 

Conclusions 

Gümüşhane Chrome Valley Şamanlı Chapel was evaluated 

in terms of soil properties and the results are given below. 

• Seismic velocity values of Şamanlı Chapel obtained using 

seismic methods were determined as Vp: 1470 m/s, Vs: 801 m/s 
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for the first layer, Vp: 2510 m/s, Vs: 1377 m/s for the second 

layer. 

• The soil was defined by determining the obtained velocity 

values and the Poisson ratio, shear modulus, elasticity 

modulus, Bulk modulus, dominant frequency (A0) and 

dominant period (T0) parameters. 

• It is seen that the dominant period obtained from the seismic 

velocity values is 0.1 s, and the TA and TB values of this 

period are 0.07 and 0.15 s, respectively. These values have 

been determined to indicate Z1 soil class according to the 

TBDY. 

• Units of the Hamurkesen formation according to ground class; 

In the light of the information obtained as a result of MASW 

measurements, it was determined according to TBDY that the 

soil type with an average speed of Vs30m was 1167.7 m/s and 

was in the ZB "Less weathered, medium solid rocks" group. 

• Based on the engineering characteristics acquired, it was 

determined that the Şamanlı Chapel was constructed on a 

stable and robust bedrock, indicating that no damage was 

caused by unfavorable ground conditions. The visible 

structural damages are believed to be a result of human 

activities, water infiltration into the structure, the decay of the 

stones due to their overall deterioration, and the presence of 

clay layers or other foreign substances in the stones, leading to 

ruptures and separations in these areas. The Şamanlı Chapel 

has likely experienced varied degrees of structural degradation 

over time, including changes in function and deterioration 

caused by physical forces, throughout its existence. 
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Introduction 

Natural stones are materials commonly used for structures 

constructed for defence, beliefs and residential purposes from the 

past to the present day. From the moment natural stones are quarried, 

they are exposed to atmospheric processes and deterioration 

processes begin. The presence of water within the building stone 
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triggers and accelerates deterioration processes (İnce, 2021). Water 

within the building stone enters through transportation with the 

effect of capillary water absorption forces acting on water from rain 

and/or groundwater. A variety of features (low kinematics, index-

mechanical properties, structural and textural properties etc) of the 

rock control the capillary water absorption of building stones 

(Tomašićet et al., 2011; Ozcelik and Ozguven, 2014; Sengun et al., 

2014; Çobanoğlu, 2015; Bao and Wang, 2017; Pötzl et al., 2018; 

Unal and Altunok, 2019). Determining the capillary water 

absorption (CWA) value of building stones may be listed among 

important information for determining locations where the stone can 

be used and about deterioration processes. Several researchers 

examined simple regression correlations between CWA with index-

strength and textural features of building stones (Vazquez et al., 

2010; Stück et al., 2011; Dinçer et al., 2012; Sengun et al., 2014; 

İnce, 2021). Some researchers predicted the CWA values of building 

stones using artificial neural network (ANN), fuzzy and support 

vector regression (Çobanoğlu, 2015; İnce et al., 2021; Zhao et al., 

2023; Miao et al., 2023; Yu and Wei, 2023; Ding, 2023; Qian et al., 

2023). Gene expression programming (GEP) was proposed by 

Ferreira (2001) and is a prediction method commonly used in several 
disciplines (geology, environmental and civil engineering, biology) 

in recent times (İnce et al., 2019). In this study, the CWA values 

were predicted with GEP using index values for pyroclastic rocks. 

Material and Method 

For this study, 21 pyroclastic rock samples were collected 

from quarries in different regions of Anatolia. To prepare cube 

samples for use in the experimental stage, building stone blocks with 

dimensions of 30 × 30 × 30 cm were obtained from the quarries. For 

detection of the features of the building stones, cube samples with 

edge length 70 mm were prepared from these blocks.  

The prepared samples had P-wave velocity, dry density, 

porosity and CWA tests performed. For determination of the P-wave 

velocity of the building stones, the standards recommended in 
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ASTM E494 (2010) were noted. The dry density and porosity values 

of the samples were identified by paying attention to methods 

recommended in TS EN-1936 (2010). The CWA values of the 

building stones were examined on the basis of the TS EN-1925 

(2000) standard. From the moment the base of the cube samples 

contacted water, the water absorption amounts per unit area (g/m2) 

were measured at the time intervals recommended in the standard (1, 

3, 5, 10, 15, 30, 60, 480 and 1440 minutes). Measurements ended 

when the variation between two sequential measurements was less 

than 1%. Later, graphs of the square root of time (t1/2) against water 

absorption amount per unit area (g/m2) were drawn and the CWA 

value was determined for each sample from the slopes of the graphs. 

Genetic Expression Programming (GEP) Approach  

The GEP approach was developed by Ferreira in 2001. GEP 

was developed using the main principles of two programs (genetic 

algorithm and genetic programming). According to Ferreira (2001), 

in the GEP application, individuals code linear sequences of a 

genome with fixed dimensions. Later, non-linear clusters with 

different shapes and dimensions are defined and these are called 

expression trees (ETs). The gene chromosomes in GEP generally 

comprise two sections forming the head and tail. These entities are 

known as ET's, which are the expression of a chromosome. GEP 

chromosomes generally comprise more than one gene with equal 

length and each gene is divided into two sections of head and tail. 

The ETs for the GEP model developed to predict the CWA values of 

pyroclastic rocks are shown in Figure 1.  
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Figure 1. Expression Tree of GEP Model 

In this GEP model, the number of genes and head length were 

3 and 8, respectively (Table 1). During this process, multiplication 
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is used as connective process. During training and confirmation of 

the GEP model, Vp, ρd and n values were defined as input variables, 

while the CWA value was defined as the output variable (Table 1). 

In this study, 50 pyroclastic rock samples were used. To predict the 

CWA values of pyroclastic rocks with the GEP method, the Gene X 

pro Tools 4.0 software was used. The parameters chosen for the GEP 

model to predict the CWA value of building stones are given in 

Table 1. The constants for the developed model are presented in 

Table 2. 

Table 1. Parameters of GEP Approach Models  

Parameter definition GEP 

Function set +, -, *, /, Sqrt, ln, x2, x3 

Chromosomes  30 

Head size  8 

Number of genes  3 

Linking function  Multiplication 

Mutation rate  0.044 

Inversion rate  0.1 

One-point recombination rate  0.3 

Two-point recombination rate  0.3 

Gene recombination rate  0.1 

Gene transposition rate  0.1 

 

Table 2. The Input, Output Quantities and Constants Used in GEP 

Model 

Input variables Constants 

d0  ρd - g/cm3 G1c0 -8.398773 

d1 𝑛 - % G1c1 0.580963 

d2 Vp- km/s G2c0 -0.256531 

  G2c1 -0.226379 

Output variable G3c0 -4.597229 

CWA g/m2s0.5 G3c1 -8.837983 
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Results and Discussion 

Some Indexes Properties of Building Stones  

The statistical data related to P-wave velocity, porosity, dry 

density and CWA values among the index features of pyroclastic 

rocks used in the study are given in Table 3. The porosity values for 

the pyroclastic rocks used in the study varied over a broad interval 

of 12.13-38.30, while dry density values varied from 1.16 g/cm3 to 

2.19 g/cm3. According to the NBG (1985) classification, these 

samples are defined as very low-density rocks with high and very 

high porosity.  

The highest P-wave velocity value for the pyroclastic rocks 

was 4.00 km/s, with lowest P-wave velocity of 0.70 km/s. According 

to the CWA classification of Snethlage (2005), samples were 

included in the low and high absorption rock classes. The CWA 
values of the samples used in the study vary in a very wide range 

from 5.32 to 533.29 g/m2s0.5. 

Table 3. Properties of Pyroclastic Rocks Used in The Study 

Rock Properties Minimum Maximum Mean Std. Deviation 

Vp - km/s 0.70 4.00 2.44 0.80 

n - % 12.13 38.30 22.41 7.60 

d – g/cm3 1.16 2.19 1.76 0.26 

CWA- (g/m2s0.5 5.32 533.29 145.74 124.43 

Prediction of Capillary Water Absorption Values of Pyroclastic 

Rocks  

In this study, a prediction model using the GEP program for 

CWA values of 21 pyroclastic rocks collected from Anatolia was 

developed. In the model, 75% of the sample cluster (16 samples) was 

allocated for training, while 25% of the dataset (5 samples) was used 

to test the developed model. Three parameters of mean squared error 

(MSE), root mean squared error (RMSE) and correlation coefficient 

(R2) were used to check the reliability of the developed equation 

(Equations 1-3). 
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𝑀𝑆𝐸 = ∑ (𝑜𝑖)
2𝑛

𝑡=1 ,         (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑡𝑖 − 𝑜𝑖)2
𝑛
𝑖=1 ,      (2) 

𝑅2 =
(𝑛∑𝑡𝑖𝑜𝑖−∑𝑡𝑖∑𝑜𝑖)

2

(𝑛∑𝑡𝑖
2−(∑𝑡𝑖)

2)(𝑛∑𝑜𝑖
2−(∑𝑜𝑖)

2)
.     (3) 

Where n is total data number, o is calculated value and t is 

experimental value. 

The statistical parameters for the training and test sets for the 

GEP model developed to predict the CWA values of pyroclastic 

rocks are given in Table 4. For the training set of the GEP model, the 

MSE, RMSE and R2 values were 679.23, 26.06 and 0.96, 

respectively (Figure 2a). For the test set of the GEP model, the MSE 

values was 1108.29, the RMSE value was 33.29 and the R2 value 

was 0.91 (Figure 2b). 

Table 4. The CWA Statistical Values of GEP Model 

Statistical parameters 
GEP 

Training set Testing set 

MSE 679.2382 1108.2935 

RMSE 26.0622 33.2910 

R2 0.9624 0.9164 
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Figure 2. Comparison of CWA Experimental Results with Results 

of GEP Model; a) Training, b) Testing 

Conclusion 

Pyroclastic rocks are components forming the cultural 

texture with common use as building materials for many years due 

to outcropping over large areas of the Earth, ease of processing and 
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low density. The CWA values of these building stones, which vary 

over a large interval, cause different responses to deterioration 

processes. The importance of determining the CWA value, the most 

effective parameter in the deterioration process, has increased. This 

study developed a GEP model with the aim of predicting the CWA 

values for 21 different pyroclastic rocks using index features (Vp, 

ρd, and n). 

• The GEP model developed for the assessed samples 

successfully predicted the CWA value. Statistical values like MSE, 

RMSE and R2 proved this consistency. 

• The R2 values for the training and test sets for the 

developed GEP model were higher than 0.91. 

• Due to the proposed GEP model, the CWA value, 

determined with difficult and time-consuming methods, can be 

predicted without any experiments. 

With more detailed and comprehensive studies, the types of 

equations developed in this study for pyroclastic rocks collected 

from the Anatolian region will be evaluated by increasing the 

number and diversity of samples. It is recommended to evaluate the 

usability of similar index properties in determining CWA values of 

pyroclastic rocks from other parts of the world. 



 

--97-- 

 

REFERENCES  

ASTM E494. (2010). Standard Practice for Measuring 

Ultrasonic Velocity in Materials. ASTM International, West 

Conshohocken 

Bao, J., & Wang, L. (2017). Capillary imbibition of water in 

discrete planar cracks. Construction and Building Materials, 146, 

381-392. 

Çobanoğlu, İ. (2015). Prediction and identification of 

capillary water absorption capacity of travertine dimension stone. 

Arabian Journal of Geosciences, 8, 10135-10149. 

Dinçer, İ., Özvan, A., Mutluhan, A. K. I. N., Tapan, M., & 

Vural, O. Y. A. N. (2012). İgnimbiritlerin kapiler su emme 

potansiyellerinin değerlendirilmesi: Ahlat Taşı örneği. Yüzüncü Yıl 

Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), 64-71. 

Ding, M. (2023). Hybrid regression models: predicting of the 

capillary water absorption properties of construction stones. 

Multiscale and Multidisciplinary Modeling, Experiments and 

Design, 1-15. 

EN, T. (2010). Natural stone test methods-Determination of 

real density and apparent density and of total and open porosity. 

Turkish Standards Institute, Ankara, Turkey, 10. 

En, T. S. (2000). Natural stone test methods-Determination 

of water absorption coefficient by capillarity. CNR-ICR, Rome. 

Ferreira, C. (2001). Gene expression programming: a new 

adaptive algorithm for solving problems. arXiv preprint cs/0102027. 

İnce, İ., Bozdağ, A., Fener, M., & Kahraman, S. (2019). 

Estimation of uniaxial compressive strength of pyroclastic rocks 

(Cappadocia, Turkey) by gene expression programming. Arabian 

Journal of Geosciences, 12, 1-13. 

İnce, İ. (2021). Relationship between capillary water 

absorption value, capillary water absorption speed, and capillary rise 



 

--98-- 

 

height in pyroclastic rocks. Mining, Metallurgy & Exploration, 

38(2), 841-853. 

İnce, İ., Bozdağ, A., Barstuğan, M., & Fener, M. (2021). 

Evaluation of the relationship between the physical properties and 

capillary water absorption values of building stones by regression 

analysis and artificial neural networks. Journal of Building 

Engineering, 42, 103055. 

Miao, Y., Liu, Z., Zhuang, Z., & Yan, X. (2023). Hybrid 

ANFIS models were used to calculate the capillary water absorption 

values of construction stones. Journal of Intelligent & Fuzzy 

Systems, (Preprint), 1-11. 

Ozcelik, Y., & Ozguven, A. (2014). Water absorption and 

drying features of different natural building stones. Construction and 

building materials, 63, 257-270. 

Pötzl, C., Siegesmund, S., Dohrmann, R., Koning, J. M., & 

Wedekind, W. (2018). Deterioration of volcanic tuff rocks from 

Armenia: constraints on salt crystallization and hydric expansion. 

Environmental earth sciences, 77, 1-36. 

Qian, D., Yang, J., & Wang, J. (2022). Novel hybrid models 

to predict the capillary water absorption values of building stones. 

Engineering Research Express, 4(3), 035012. 

Sengun, N., Demirdag, S., Akbay, D., Ugur, I., Altindag, R., 

& Akbulut, A. (2014, October). Investigation of the relationships 

between capillary water absorption coefficients and other rock 

properties of some natural stones, V. In Global stone congress (pp. 

22-25). 

Snethlage, R. (2005). Leitfaden Steinkonservierung, 

Fraunhofer IRB, Stuttgart, p. 289. 

Stück, H., Siegesmund, S., & Rüdrich, J. (2011). Weathering 

behaviour and construction suitability of dimension stones from the 

Drei Gleichen area (Thuringia, Germany). Environmental Earth 

Sciences, 63, 1763-1786. 



 

--99-- 

 

Tomašić, I., Lukić, D., Peček, N., & Kršinić, A. (2011). 

Dynamics of capillary water absorption in natural stone. Bulletin of 

Engineering Geology and the Environment, 70, 673-680. 

Unal, M., & Altunok, E. (2019). Determination of water 

absorption properties of natural building stones and their relation to 

porosity. Engineering Sciences, 14(1), 39-45. 

Vázquez, P., Alonso, F. J., Esbert, R. M., & Ordaz, J. (2010). 

Ornamental granites: Relationships between p-waves velocity, water 

capillary absorption and the crack network. Construction and 

Building Materials, 24(12), 2536-2541. 

Yu, B., & Wei, Y. (2023). A comparison study of regression 

analysis for estimating the capillary water absorption of construction 

stones. Multiscale and Multidisciplinary Modeling, Experiments and 

Design, 1-12. 

Zhao, G., Wang, H., & Li, Z. (2023). Capillary water 

absorption values estimation of building stones by ensembled and 

hybrid SVR models. Journal of Intelligent & Fuzzy Systems, 44(1), 

1043-1055. 

 



 

--100-- 

 

 

 

CHAPTER VII 

 

 

Journey from the Depths of the Earth to the Surface: 

Kimberlites 

 

 

 

 

Mustafa Eren RİZELİ 

 

Introduction 

Kimberlites are fascinating geological formations with 

mysterious allure beneath the Earth's surface. Named after the town 

of Kimberley in South Africa, where they were first discovered, 

these igneous rocks have captivated scientists and gem enthusiasts 

alike for their role in the formation of diamonds. Kimberlites are not 

just rocks; they are conduits of Earth's deep-seated processes, 

bringing precious minerals from the mantle to the surface. 

Understanding the unique characteristics and origins of kimberlites 

sheds light on the intricate dynamics that govern the Earth's geology 

and the remarkable journey of diamonds from the planet's depths to 

the hands of humans.  
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This compilation study was conducted to explain what 

kimberlites are, the geological processes involved in their formation, 

and the issues related to kimberlite-diamond relations in light of 

current studies.  

Methodology 

A rigorous research methodology was employed to compile 

comprehensive information on kimberlites and their association with 

diamonds, drawing from various scientific books, peer-reviewed 

articles, theses, and reputable online resources. The following steps 

were undertaken to ensure the accuracy and reliability of the 

gathered information: Scientific books devoted to geology, 

mineralogy and petrology were extensively reviewed, focusing on 

chapters discussing kimberlites and diamond formation (1). Peer-

reviewed journal articles investigating the geological processes 

involved in forming kimberlites and the development of diamonds 

within these structures were analysed. It was aimed to obtain 

findings about kimberlite and diamonds by examining master's and 

doctoral theses (2). Searches were conducted in reputable online 

sources, including academic databases and scientific websites, to 

gather up-to-date information and recent advances in understanding 

kimberlites and diamond relationships (3). 

This compilation study uses the above methodology to 

synthesise kimberlites and their complex connection to diamond 

formation. We aim to draw on the academic community's latest 

scientific research and understanding. 

Geological processes in the formation of kimberlites  

Kimberlites, uncommon igneous rocks (Fig. 1), are found in 

the form of volcanic diatremes, dykes, and sills within enduring and 

stable continental areas (Mitchell, 1986; Giuliani and Pearson, 

2019). Kimberlites originate in specific regions of the Earth's mantle 

called diamond stability zones. These zones are characterised by 

high temperatures and pressures conducive to the diamonds' 
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stability. The process begins with the partial melting of the mantle 

rocks within these diamond stability zones. The exact mechanisms 

triggering this partial melting are not fully understood, but it is 

believed to be related to changes in pressure, temperature, and the 

presence of volatile substances such as water (Tappe et al., 2018; 

Pearson et al., 2019; Castillo-Oliver et al., 2020). The partially 

melted material gives rise to a unique type of magma known as 

kimberlitic magma. Kimberlitic magmas are distinct for their high 

volatile content, including water, carbon dioxide, and other gases. 

The composition of these magmas plays an important role in their 

explosive nature and ability to transport diamonds to the surface 

(Mitchell, 2008).  

 

Figure 1. Hand specimens of kimberlites. (A) Kimberley, South 

Africa; (B) Monastery Mine, South Africa; (C-D) Udachnaya open-

pit mine, Russia; (E) Kelsey Lake, State Line Kimberlite Mining 

District, Colorado, USA (Mindat, 2023) 

Kimberlitic magma rises rapidly through narrow, pipe-like 

conduits in the Earth's crust. It carries mantle material, including 

xenoliths (fragments of surrounding rocks) and diamonds. The rapid 

ascent and eruption bring these materials from the mantle to the 



 

--103-- 

 

Earth's surface (Mitchell, 1986; Wilson and Head, 2007; Russell et 

al., 2012, 2019). Ascent speed is critical in preserving diamonds, as 

rapid ascent prevents them from transforming into graphite during 

the journey. The ascent is thought to be facilitated by the buoyancy 

of the volatile-rich magma. The kimberlitic magma reaches the 

Earth's surface, resulting in a violent and explosive eruption. This 

process creates volcanic landforms known as kimberlite pipes or 

diatremes (Seib et al., 2013). These pipes are characterised by a 

brecciated (fragmented) rock matrix containing various minerals, 

including diamonds (Mitchell et al., 2019). The chart in Figure 1 

shows the structure of an ideal kimberlite suggested by Mitchell 

(1986). 

 

Figure 2. Illustration of an idealised kimberlite system, 

demonstrating the hypabyssal, diatreme, and crater facies 

(Mitchell, 1986). 
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It is important to note that the formation of kimberlites is a 

dynamic and intricate geological process, and researchers continue 

to investigate the details of each stage. The study of kimberlites 

provides valuable insights into the deep Earth processes and the 

journey of diamonds from the mantle to the Earth's surface (Mitchell, 

1986; Griffin et al., 1999, 2004; Russell et al., 2012; Aulbach et al., 

2018; Moss et al., 2018; Giuliani and Pearson, 2019). 

Types of kimberlites 

There is ongoing controversy regarding the specific 

composition of kimberlite melts (Foley et al., 2019; Pearson et al., 

2019; Mitchell et al., 2019), and similar debates surround the 

crystallisation conditions of kimberlite. Smith (1983) categorised 

kimberlites into two groups, Group I and Group II, based on 

variations in their isotopic composition. 

Group I comprises the most classical kimberlites initially 

referred to as basaltic kimberlites. These are ultrabasic rocks with 

low silica content (SiO2 < 45 wt%), high levels of potassium (K/Na 

atomic ratio > 1), and rich in volatiles, predominantly carbon dioxide 

(CO2). They are characterised by the presence of large and very large 

crystals (macro- and megacrysts) of magnesium-rich minerals such 

as olivine, pyropic garnet, ilmenite, alternately chromium-rich 

diopsidic pyroxene, enstatite, titanium-poor chromite, and 

phlogopite. These crystals are embedded in a fine matrix consisting 

of olivine, carbonate, serpentine, and magnesium- and/or calcium-

rich minerals. It is noteworthy that both the macro- and megacrysts 

are, at least in part, xenocrysts, meaning they are accidental 

crystalline components originating from the disruption of country-

rocks, essentially deep-seated mantle peridotites, and eclogites, 

intersected by the ascending kimberlite magma (Smith, 1983). 

Group II kimberlites, or orangeites, were originally labelled 

micaceous or lamprophyric kimberlites. These rocks are 

ultrapotassic (with a K/Na ratio exceeding 3), peralkaline (with [K + 

Na]/Al greater than 1), and rich in volatiles, primarily water (H2O). 
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They are characterised by the presence of macro-crysts composed of 

phlogopite and olivine, set in a groundmass containing diopside, 

phlogopite, and olivine, often exhibiting zoning to titanian aegirine. 

Additionally, the groundmass contains spinel with compositions 

ranging from magnesium-bearing chromite to titanium-bearing 

magnetite, perovskite, and other minerals. Notably, Group II 

kimberlites exhibit a mineralogical similarity to lamproites rather 

than Group I kimberlites (Smith, 1983). 

The global occurrence of kimberlites 

Kimberlites are distributed across all continents worldwide 

(see Fig. 4). Analysing the global distribution of kimberlites, 

economically significant kimberlites are primarily located on Pre-

Cambrian Cratons, specifically those with an Archaean age (older 

than approximately 2.5 billion years; Clifford, 1966). Clifford's 

Rule, as it came to be known, highlights no documented instances of 

primary diamond deposits in crustal terrains that are less than 1.6 

billion years old. The distinctive correlation implies a link between 

the existence of diamonds and the age of the subcontinental 

lithosphere. Clifford's rule is widely recognised as an important 

guideline in initiatives related to diamond exploration. It is important 

to highlight that diamonds found in kimberlite are generally of a 

more recent age when compared to the lithospheric region they 

penetrate. Examples range from Cretaceous occurrences, including 

many in South Africa, to Palaeozoic instances (such as those in 

Siberia), and the entire spectrum stretches from the Proterozoic to 

the Neogene, encompassing instances like the 22-million-year-old 

examples in Western Australia.  
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Figure 3. A worldwide elevation map displays the presence of 

kimberlites (Giuliani and Pearson, 2019 and references therein) 

It is important to note that while kimberlites are widespread, 

not all contain economically viable quantities of diamonds. High-

quality diamonds and favourable mining conditions often determine 

the economic significance of kimberlite deposits. Additionally, the 

distribution of kimberlites is subject to ongoing exploration and 

discovery efforts, with new occurrences occasionally identified. 

The Economic significance and global impact of kimberlites  

Kimberlites serve as the primary geological formations 

containing diamonds (Fig. 4), constituting over 70% of the total 

diamond value and representing the primary source for most 

commercial diamond production. These diamonds do not come from 

the magma itself (phenocrysts); rather, they are external crystals 

(xenocrysts) transported by a kimberlitic magma as it rises towards 

the Earth's surface (Harte and Cayzer, 2007; Mitchell et al., 2019). 
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Figure 4. Diamonds in kimberlites from Bultfontein Mine, 

Kimberley, South Africa (Alexstrekeisen, 2023) 

The exploration and mining of kimberlites are closely 

intertwined with the history of diamond research. Before 1865, 

diamonds were only obtained from alluvial deposits in Brazil and 

India. The finding of alluvial diamonds in South Africa in 1866 

sparked a diamond rush, eventually uncovering primary diamond 

deposits in 1869 on farms that would later become the townships of 

Jagersfontein, Koffiefontein, and Kimberley (Field et al., 2008). The 

systematic mining operations at the Bultfontein, Dutoitspan, De 

Beers, and Kimberley deposits marked the initial indication that the 

rocks hosting diamonds had an igneous origin. These structures were 

later designated as "kimberlites," a name derived from the town of 

Kimberley, where these deposits were situated (Lewis, 1887). 

However, it was not until the 1950s and 1960s, with the discovery of 
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kimberlites beyond southern Africa in places like the USA and 

Russia, that the worldwide importance of kimberlite magmatism was 

entirely recognised. The modern discovery of kimberlites was 

significantly supported by Peter H. Nixon's influential book 

"Lesotho Kimberlites" (Nixon, 1973). 

Currently, around 3,500 kimberlites have been recognised 

and distributed across every continent worldwide (Fig. 3). Moreover, 

diamond exploration companies estimate the existence of 

approximately 3,000 additional kimberlites. Most of these 

occurrences are located in the stable cores of continents, particularly 

in the Archean cratons and the adjacent mobile belts. The connection 

between diamond-bearing kimberlites and cratons (or peri-cratonic 

areas) was identified by Kennedy in the 1960s and later termed 

"Clifford's rule." Kimberlites are frequently associated with 

significant lithospheric structures, such as sutures between 

continental blocks and shear zones. They are commonly located at 

the intersections of intersecting lineaments (e.g., Jelsma et al., 2009). 

The rise of kimberlite magma takes advantage of pre-existing areas 

of mechanical vulnerability in the upper lithosphere. 

Out of the kimberlites identified so far, only 3% exhibit 

significant diamond content, which contains macro-diamonds with a 
grade exceeding 1 carat per hundred tons (de Wit, 2010). A modest 

number, less than 100 kimberlites, has been subjected to large-scale 

commercial diamond mining. This includes a few olivine lamproites, 

encompassing rocks formerly categorised as "Group II kimberlites " 

or orangeites," hosting diamond mines like Finsch in South Africa 

and Argyle in Western Australia. Several factors influence the 

economic viability of a kimberlite, including (1) the diamond grade, 

which refers to the concentration of diamonds within the kimberlite 

rock mass; (2) the quality of diamonds, primarily assessed by their 

average size, clarity, and colour; (3) the size of the ore body; and (4) 

the local environment, encompassing climate, infrastructure, and 

political stability (Kjarsgaard, 2007). Evaluating the economic 

viability and the practicality of extracting resources from a 
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kimberlite formation presents a significant challenge (Kjarsgaard et 

al., 2007). 

In summary, kimberlites have significant economic and 

commercial implications, primarily driven by the extraction and 

trade of diamonds. The diamond industry, in turn, influences various 

sectors, including job creation, infrastructure development, and 

investment opportunities. However, balancing economic gains with 

environmental and social considerations is important to ensure long-

term sustainability. 

Results 

Kimberlites, named after the South African town of 

Kimberley, are intriguing geological formations playing a crucial 

role in the formation of diamonds. This study aims to elucidate 

kimberlites, their geological processes, and their association with 

diamonds by compiling current research. Kimberlites, uncommon 

igneous rocks, form in volcanic diatremes, dykes, and sills within 

stable continental areas. Originating in diamond stability zones in 

the Earth's mantle, partial melting, influenced by pressure, 

temperature, and volatile substances, gives rise to kimberlitic 

magma. This magma, rich in volatiles, ascends rapidly through 

conduits, carrying mantle material, xenoliths, and diamonds. The 

explosive eruption creates kimberlite pipes on the Earth's surface, 

preserving diamonds due to rapid ascent. Controversy surrounds 

kimberlite melt compositions. Smith categorised them into Group I 

(basaltic kimberlites) and Group II (orangeites). Group I exhibits 

ultrabasic, volatile-rich characteristics, while Group II is 

ultrapotassic, peralkaline, and water-rich, resembling lamproites. 

Kimberlites are globally distributed, with economically significant 

deposits primarily on Pre-Cambrian Cratons, supporting Clifford's 

Rule. While widespread, not all kimberlites contain economically 

viable diamonds, and exploration efforts continue. Kimberlites 

constitute over 70% of the total diamond value and are the primary 

source for commercial diamond production. They play a pivotal role 

in the history of diamond research.  A small percentage of identified 
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kimberlites have significant diamond content. Economic viability 

depends on factors such as diamond grade, quality, ore body size, 

and local conditions. In summary, kimberlites represent a dynamic 

geological process crucial to the diamond industry. Their economic 

significance underscores their impact on various sectors, 

necessitating a balance between economic gains and environmental 

and social considerations for long-term sustainability. 
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